高数定积分问题,求详细解答过程! 50
1个回答
展开全部
3.x = tany
dx = (secy)^2 dy
∫dx/√(x^2+1)^3
= ∫cosy dy
= siny + C
= x/√(1+x^2) + C
4.
Let x - 1 = 1/t and dx = - 1/t² dt
∫ 1/[(x - 1)√(x² - 2)] dx
= ∫ 1/[(1/t)√((1/t + 1)² - 2)] · (- 1/t²) dt
= ∫ 1/√(1/t² + 2/t - 1) · (- 1/t) dt
= - ∫ 1/√(1 + 2t - t²) dt
= - ∫ 1/√[(2 - (t - 1)²] dt
= - arcsin[(t - 1)/√2] + C
= arcsin[(1 - 1/(x - 1))/√2] + C
= arcsin[(x - 2)/(√2(x - 1))] + C
= arctan[(x - 2)√(x² - 2)] + C
dx = (secy)^2 dy
∫dx/√(x^2+1)^3
= ∫cosy dy
= siny + C
= x/√(1+x^2) + C
4.
Let x - 1 = 1/t and dx = - 1/t² dt
∫ 1/[(x - 1)√(x² - 2)] dx
= ∫ 1/[(1/t)√((1/t + 1)² - 2)] · (- 1/t²) dt
= ∫ 1/√(1/t² + 2/t - 1) · (- 1/t) dt
= - ∫ 1/√(1 + 2t - t²) dt
= - ∫ 1/√[(2 - (t - 1)²] dt
= - arcsin[(t - 1)/√2] + C
= arcsin[(1 - 1/(x - 1))/√2] + C
= arcsin[(x - 2)/(√2(x - 1))] + C
= arctan[(x - 2)√(x² - 2)] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询