某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,

某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是_____... 某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是______. 展开
 我来答
_离2qfJA獪
2014-10-11 · 超过65用户采纳过TA的回答
知道答主
回答量:116
采纳率:100%
帮助的人:110万
展开全部
正三角形、正四边形内角分别为60°、90°,当60°×3+90°×2=360°,故能铺满;
正三角形、正五边形内角分别为60°、108°,显然不能构成360°的周角,故不能铺满;
正三角形、正六边形内角分别为60°、120°,当60°×2+120°×2=360°,故能铺满;
正三角形、正八边形内角分别为60°、135°,显然不能构成360°的周角,故不能铺满;
正三角形、正十边形内角分别为60°、144°,显然不能构成360°的周角,故不能铺满;
正四边形、正五边形内角分别为90°、108°,显然不能构成360°的周角,故不能铺满;
正四边形、正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满;
正四边形、正八边形内角分别为90°、135°,当90°+135°×2=360°,故能铺满;
正四边形、正十边形内角分别为90°、144°,显然不能构成360°的周角,故不能铺满;
正五边形、正六边形内角分别为108°、120°,显然不能构成360°的周角,故不能铺满;
正五边形、正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满;
正五边形、正十边形内角分别为108°、144°,当108°×2+144°=360°,故能铺满;
正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;
正六边形、正十边形内角分别为120°、144°,显然不能构成360°的周角,故不能铺满;
正八边形、正十边形内角分别为135°、144°,显然不能构成360°的周角,故不能铺满.
故可供选择的两种组合是:正三角形和正四边形、正三角形和正六边形、正四边形和正八边形、正五边形、正十边形中任选两种即可.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式