如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,且点P在y轴上,若使△MNP为等腰直角三角形,

如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,且点P在y轴上,若使△MNP为等腰直角三角形,请写出符合条件的点M的坐标(-3,-3),(-1,1),... 如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,且点P在y轴上,若使△MNP为等腰直角三角形,请写出符合条件的点M的坐标(-3,-3),(-1,1),(-34,32)(-3,-3),(-1,1),(-34,32). 展开
 我来答
侵略地球4湎
推荐于2016-09-01 · TA获得超过152个赞
知道答主
回答量:173
采纳率:0%
帮助的人:62.4万
展开全部
解答:解:如图1,
当M运动到(-1,1)时,ON=1,MN=1,
∵MN⊥x轴,所以由ON=MN可知,△MNP为等腰直角三角形;

如图2,当M运动到第三象限时,要MN=MP,且PM⊥MN,
设点M(x,2x+3),则有:-x=-(2x+3),
解得:x=-3,
所以点M坐标为(-3,-3).

若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),
则有-x=-
1
2
(2x+3),化简得-2x=-2x-3,
这方程无解,所以这时不存在符合条件的M点;
如图2,∵当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,
设点M′(x,2x+3),则OP=ON′,而OP=
1
2
M′N′,
∴有-x=
1
2
(2x+3),
解得:x=-
3
4

∴M′(-
3
4
3
2
),
综上,符合条件的点M坐标是(-3,-3),(-1,1),(-
3
4
3
2
).
故答案为:(-3,-3),(-1,1),(-
3
4
3
2
).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式