设A、B为m×n矩阵,证明A与B等价的充要条件为R(A)=R(B)
2个回答
展开全部
证明:
(必要性)设A与B等价,则B可以看成是A经过有限次初等变换得到的矩阵,而
初等变换不改变矩阵的秩,所以R(A)=R(B)。
(充分性)设R(A)=R(B),则A、B的标准型都为Er ,即A、B都与Er 等价,从而A与B等价。
扩展资料:
矩阵等价的性质
1、矩阵A和A等价(反身性);
2、矩阵A和B等价,那么B和A也等价(等价性);
3、矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);
4、矩阵A和B等价,那么IAI=KIBI。(K为非零常数)
5、具有行等价关系的矩阵所对应的线性方程组有相同的解
对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:
(1)矩阵可以通过基本行和列操作的而彼此变换。
(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
参考资料来源:百度百科-等价矩阵
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询