解微分方程dy/dx=√(2x+3y)
3个回答
展开全部
解:微分方程为dy/dx=√(2x+3y),化为3dy/dx=3√(2x+3y),有d(3y)/dx=3√(2x+3y),设√(2x+3y)=u,微分方程化为d(u²-2x)/dx=2u,2udu/dx-2=2u,udu/dx=u+1,udu/(u+1)=dx,du-du/(u+1)=dx,u-ln|u+1|=x+ln|c|,u-x=ln[c(u+1)],微分方程的通解为√(2x+3y)-x=ln[c(√(2x+3y)+1] (c为任意非零常数)
展开全部
u = 2x+ 3y
du/dx = 2 + 3dy/dx
dy/dx=√(2x+3y)
(1/3)[du/dx -2 ] = √u
du/dx -2 = 3√u
∫du/(3√u+2) = ∫dx
x = ∫du/(3√u+2)
x= (2/3)√u - (4/3)ln|3√u+2| + C
=(2/3)√(2x+3y) - (4/3)ln|3√(2x+3y)+2| + C
let
v=√u
dv = du/(2√u)
du =2vdv
∫du/(3√u+2)
=∫2vdv/(3v+2)
= (2/3)∫ dv - (4/3)∫ dv/(3v+2)
= (2/3)v - (4/3)ln|3v+2| + C
= (2/3)√u - (4/3)ln|3√u+2| + C
du/dx = 2 + 3dy/dx
dy/dx=√(2x+3y)
(1/3)[du/dx -2 ] = √u
du/dx -2 = 3√u
∫du/(3√u+2) = ∫dx
x = ∫du/(3√u+2)
x= (2/3)√u - (4/3)ln|3√u+2| + C
=(2/3)√(2x+3y) - (4/3)ln|3√(2x+3y)+2| + C
let
v=√u
dv = du/(2√u)
du =2vdv
∫du/(3√u+2)
=∫2vdv/(3v+2)
= (2/3)∫ dv - (4/3)∫ dv/(3v+2)
= (2/3)v - (4/3)ln|3v+2| + C
= (2/3)√u - (4/3)ln|3√u+2| + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询