3个回答
展开全部
所谓勾股数,就是当组成一个直角三角形的三边长都为正整数时,我们就称这一组数为勾股数。
那么,组成一组勾股数的三个正整数之间,是否具有一定的规律可寻呢?下面我们一起来观察几组勾股数:
规律一:在勾股数(3,4,5)、(5,12,13)、(7,24,25)(9,40,41)中,我们发现
由(3,4,5)有: 32=9=4+5
由(5,12,13)有: 52=25=12+13
由(7,24,25)有: 72=49=24+25
由(9,40,41)有: 92=81=40+41.
即在一组勾股数中,当最小边为奇数时,它的平方刚好等于另外两个连续的正整数之和。因此,我们把它推广到一般,从而可得出以下公式:
∵(2n+1)2=4n2+4n+1=(2n2+2n)+(2n2+2n+1)
∴(2n+1)2+(2n2+2n)2=(2n2+2n+1)2(n为正整数)
证明(略)
勾股数公式一:(2n+1,2n2+2n,2n2+2n+1)(n为正整数)
规律二:在勾股数(6,8,10)、(8,15,17)、(10,24,26)中,我们发现
由(6,8,10)有: 62=36+2×(8+10)
由(8,15,17)有: 82=64=2×(15+17)
由(10,24,26)有: 102=100=2×(24+26)
即在一组勾股数中,当最小边为偶数时,它的平方刚好等于两个连续整数之和的二倍,推广到一般,从而可得出另一公式:
∵(2n)2=4n2=2[(n2-1)+(n2+1)]
∴(2n)2+(n2-1)2=(n2+1)2(n≥2且n为正整数)
证明(略)
勾股数公式二:(2n,n2-1,n2+1)(n≥2且n为正整数)
利用以上两个公式,我们可以快速写出各组勾股数。
那么,组成一组勾股数的三个正整数之间,是否具有一定的规律可寻呢?下面我们一起来观察几组勾股数:
规律一:在勾股数(3,4,5)、(5,12,13)、(7,24,25)(9,40,41)中,我们发现
由(3,4,5)有: 32=9=4+5
由(5,12,13)有: 52=25=12+13
由(7,24,25)有: 72=49=24+25
由(9,40,41)有: 92=81=40+41.
即在一组勾股数中,当最小边为奇数时,它的平方刚好等于另外两个连续的正整数之和。因此,我们把它推广到一般,从而可得出以下公式:
∵(2n+1)2=4n2+4n+1=(2n2+2n)+(2n2+2n+1)
∴(2n+1)2+(2n2+2n)2=(2n2+2n+1)2(n为正整数)
证明(略)
勾股数公式一:(2n+1,2n2+2n,2n2+2n+1)(n为正整数)
规律二:在勾股数(6,8,10)、(8,15,17)、(10,24,26)中,我们发现
由(6,8,10)有: 62=36+2×(8+10)
由(8,15,17)有: 82=64=2×(15+17)
由(10,24,26)有: 102=100=2×(24+26)
即在一组勾股数中,当最小边为偶数时,它的平方刚好等于两个连续整数之和的二倍,推广到一般,从而可得出另一公式:
∵(2n)2=4n2=2[(n2-1)+(n2+1)]
∴(2n)2+(n2-1)2=(n2+1)2(n≥2且n为正整数)
证明(略)
勾股数公式二:(2n,n2-1,n2+1)(n≥2且n为正整数)
利用以上两个公式,我们可以快速写出各组勾股数。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
这是绝对不可能的~~
如果你知道的是一个直角边,另一个直角边可以是个变量,同样斜边也是个变量
如果你知道的市一个斜边,那想像一下用着条斜边作圆周的直径,再圆上的任意一个点和斜边终点的连线都构成一个直角三角形,所以,这两条直角边是变量
如果你知道的是一个直角边,另一个直角边可以是个变量,同样斜边也是个变量
如果你知道的市一个斜边,那想像一下用着条斜边作圆周的直径,再圆上的任意一个点和斜边终点的连线都构成一个直角三角形,所以,这两条直角边是变量
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
没有办法知道,知道两个就好办了.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询