平面向量数量积的分配律是怎么推来的
1个回答
展开全部
根据向量的数量积具有反身性进行判定;表示与共线的向量,表示与共线的向量,与不一定共线;根据向量具有分配律进行判定;根据向量的数量积公式进行判定;列举反例,当与垂直,与垂直时,不满足条件. 解:,向量的数量积具有反身性,故正确;表示与共线的向量,表示与共线的向量,与不一定共线,故不正确;,向量具有分配律,故正确,不一定为,故不正确;当与垂直,与垂直时,满足条件,但,故不正确.故选. 本题主要考查了向量数量积的运算法则,同时考查了类比推理,属于中档题.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询