参数方程与普通方程的互化有哪些公式

 我来答
教育小百科达人
推荐于2019-11-11 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:474万
展开全部

有以下四个公式:

cos²θ+sin²θ=1

ρ=x²+y²

ρcosθ=x

ρsinθ=y

参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。

一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数: 

 ,并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。

扩展资料:

在柯西中值定理的证明中,也运用到了参数方程。

柯西中值定理

如果函数f(x)及F(x)满足:

⑴在闭区间[a,b]上连续;

⑵在开区间(a,b)内可导;

⑶对任一x∈(a,b),F'(x)≠0。

那么在(a,b)内至少有一点ζ,使等式

[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。

柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。

参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。

譬如一个圆柱:

r(u,v)=[x(u,v),y(u,v),z(u,v)]=[acos(u),asin(u),v]

参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。

用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。

根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。

参考资料:百度百科-参数方程

帐号已注销
推荐于2019-10-26 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:174万
展开全部

参数方程与普通方程的互化最基本的有以下四个公式:

1.cos²θ+sin²θ=1

2.ρ=x²+y²

3.ρcosθ=x

4.ρsinθ=y

其他公式:

曲线的极坐标参数方程ρ=f(t),θ=g(t)。

圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标

椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数 [2] 

双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数

抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数

直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数

或者x=x'+ut,  y=y'+vt (t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)

圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数。

扩展资料

参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。

这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。

用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。

根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。

参考资料:百度百科参数方程

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
暮不语
高粉答主

推荐于2019-10-02 · 说的都是干货,快来关注
知道小有建树答主
回答量:421
采纳率:100%
帮助的人:16.2万
展开全部
  1. 椭圆x2/a2+y2/b2=1(a>b>0)的参数方程是x=acosφ,y=bsinφ(φ是参数)

  2. 双曲线x2/a2-y2/b2=1(a>0,b>0)的参数方程是x=asecφ,y=btgφ(φ是参数)

  3. 抛物线y2=2px的参数方程是x=2pt2,y=2pt(t是参数)

  4. 曲线的极坐标参数方程ρ=f(t),θ=g(t)。

  5. 圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标

扩展资料

参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。

一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数: 

 

并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。

参考资料百度百科-参数方程

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
葱葱年華_
高粉答主

推荐于2019-08-08 · 每个回答都超有意思的
知道小有建树答主
回答量:140
采纳率:100%
帮助的人:3.9万
展开全部

1.cos²θ+sin²θ=1

2.ρ=x²+y²

3.ρcosθ=x

4.ρsinθ=y

扩展资料

参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。

参考资料:

百度百科-参数方程

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
郭敦顒
2015-09-28 · 知道合伙人教育行家
郭敦顒
知道合伙人教育行家
采纳数:7343 获赞数:32731
部队通令嘉奖,功臣单位代表,铁道部奖。

向TA提问 私信TA
展开全部
郭敦顒回答:
参数方程:
x= f(t)
y=g(t),t为参数。
如椭圆的参数方程:
x=acost (1)
y=bsint (2)
由(1)、(2)分别得
x/a=cost (3)
y/b=sint (4)
从而有
x²/a²=cos²t (5)
y²/b²=sin²t (6)
(5)+(6)得椭圆的标准方程:
x²/a²+ y²/b²=1。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式