1个回答
展开全部
设所求向量是 (x1, x2, x3, x4)^T, 则
x1+x2-x3+x4 = 0
x1-x2-x3+x4 = 0
2x1+x2+x3+3x4 = 0
系数矩阵 A =
[1 1 -1 1]
[1 -1 -1 1]
[2 1 1 3]
行初等变换为
[1 1 -1 1]
[0 -2 0 0]
[0 -1 3 1]
行初等变换为
[1 0 -1 1]
[0 1 0 0]
[0 0 3 1]
r(A) = 3, 方程组同解变形为
x1-x3 = -x4
x2 = 0
3x3 = -x4
取 x4 = -3, 得基础解系 (4, 0, 1, -3)^T
该向量与已知 3 个向量都正交,
单位化,得 (4/√26, 0, 1/√26, -3/√26)^T
x1+x2-x3+x4 = 0
x1-x2-x3+x4 = 0
2x1+x2+x3+3x4 = 0
系数矩阵 A =
[1 1 -1 1]
[1 -1 -1 1]
[2 1 1 3]
行初等变换为
[1 1 -1 1]
[0 -2 0 0]
[0 -1 3 1]
行初等变换为
[1 0 -1 1]
[0 1 0 0]
[0 0 3 1]
r(A) = 3, 方程组同解变形为
x1-x3 = -x4
x2 = 0
3x3 = -x4
取 x4 = -3, 得基础解系 (4, 0, 1, -3)^T
该向量与已知 3 个向量都正交,
单位化,得 (4/√26, 0, 1/√26, -3/√26)^T
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询