求证明过程
1个回答
追答
判定与性质 听语音
圆内接四边形的对角和为180°,并且任何一个外角都等于它的内对角。
四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则有:
(1)∠A+∠C=π,∠B+∠D=π(即图中∠DAB+∠DCB=π, ∠ABC+∠ADC=π)
(2)∠DBC=∠DAC(同弧所对的圆周角相等)。
(3)∠ADE=∠CBE(外角等于内对角,可通过(1)、(2)得到)
(4)△ABP∽△DCP(两三角形三个内角对应相等,可由(2)得到)
(5)AP*CP=BP*DP(相交弦定理)
(6)EB*EA=EC*ED(割线定理)
(7)EF²= EB*EA=EC*ED(切割线定理)
(8)AB*CD+AD*CB=AC*BD(托勒密定理)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询