高数,谁会?红笔写的
2个回答
2016-06-27
展开全部
原式=∫1/(x²+2x+5) d(x²+2x+5)+∫(x+2)/(x²+2x+5) dx
=ln(x²+2x+5)+1/2 ∫[(2x+2)+2]/(x²+2x+5) dx
=ln(x²+2x+5)+1/2 ∫1/(x²+2x+5) d(x²+2x+5)+ ∫1/(x²+2x+5)dx
=ln(x²+2x+5)+1/2 ln(x²+2x+5)+ ∫1/[(x+1)²+4]dx
=3/2ln(x²+2x+5)+ 1/2 arctan(x+1)/2+C
=ln(x²+2x+5)+1/2 ∫[(2x+2)+2]/(x²+2x+5) dx
=ln(x²+2x+5)+1/2 ∫1/(x²+2x+5) d(x²+2x+5)+ ∫1/(x²+2x+5)dx
=ln(x²+2x+5)+1/2 ln(x²+2x+5)+ ∫1/[(x+1)²+4]dx
=3/2ln(x²+2x+5)+ 1/2 arctan(x+1)/2+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫[(3x+4)/(x²+2x+5)]dx
=(3/2)∫[(2x+6)/(x²+2x+5)]dx
=(3/2)∫[(2x+2+4)/(x²+2x+5)]dx
=(3/2)∫[(2x+2)/(x²+2x+5)]dx+(3/2)∫[4/(x²+2x+5)]dx
=(3/2)∫[1/(x²+2x+5)]d(x²+2x+5)+6∫[1/(x²+2x+5)]dx
=(3/2)ln(x²+2x+5)+6∫[1/(x+1)²+2²]dx
=(3/2)ln(x²+2x+5)+6×(1/2)arctan[(x+2)/2]+C
=(3/2)ln(x²+2x+5)+3arctan[(x+2)/2]+C
=(3/2)∫[(2x+6)/(x²+2x+5)]dx
=(3/2)∫[(2x+2+4)/(x²+2x+5)]dx
=(3/2)∫[(2x+2)/(x²+2x+5)]dx+(3/2)∫[4/(x²+2x+5)]dx
=(3/2)∫[1/(x²+2x+5)]d(x²+2x+5)+6∫[1/(x²+2x+5)]dx
=(3/2)ln(x²+2x+5)+6∫[1/(x+1)²+2²]dx
=(3/2)ln(x²+2x+5)+6×(1/2)arctan[(x+2)/2]+C
=(3/2)ln(x²+2x+5)+3arctan[(x+2)/2]+C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询