∫x²√a²-x²dx=?
1个回答
展开全部
∫x^2.√(a^2-x^2) dx
let
x= asiny
dx=acosy dy
∫x^2.√(a^2-x^2) dx
=a^4∫(siny)^2.(cosy)^2 dy
=(a^4/4)∫(sin2y)^2 dy
=(a^4/8)∫ (1- cos4y) dy
=(a^4/8) [ y- (1/4)sin4y ] + C
=(a^4/8) { arcsin(x/a) - (x/a) .(√(a^2-x^2)/a) [ 1- 2(x/a)^2 ] } + C
where
(1/4)sin4y
=(1/2) sin2y. cos2y
=(1/2) [ 2siny. cosy ( 1- 2(siny)^2 ) ]
=siny. cosy ( 1- 2(siny)^2 ) ]
=(x/a) .(√(a^2-x^2)/a) [ 1- 2(x/a)^2 ]
let
x= asiny
dx=acosy dy
∫x^2.√(a^2-x^2) dx
=a^4∫(siny)^2.(cosy)^2 dy
=(a^4/4)∫(sin2y)^2 dy
=(a^4/8)∫ (1- cos4y) dy
=(a^4/8) [ y- (1/4)sin4y ] + C
=(a^4/8) { arcsin(x/a) - (x/a) .(√(a^2-x^2)/a) [ 1- 2(x/a)^2 ] } + C
where
(1/4)sin4y
=(1/2) sin2y. cos2y
=(1/2) [ 2siny. cosy ( 1- 2(siny)^2 ) ]
=siny. cosy ( 1- 2(siny)^2 ) ]
=(x/a) .(√(a^2-x^2)/a) [ 1- 2(x/a)^2 ]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |