怎样判定一个二次型是正定的? 50

 我来答
ZYL9951314
2016-09-16 · TA获得超过3.8万个赞
知道大有可为答主
回答量:6464
采纳率:55%
帮助的人:1747万
展开全部
定义:设有实二次型,如果对于任意一组不全为零的实数,都有f(x)>0,则称此二次型为正定二次型,并把其对称矩阵A称为正定矩阵.
正定二次型的判别方法:
a):二次型标准形中n个系数都大于零,则其为正定;
b):二次型的对称矩阵A的n个特征值大于零,则其为正定;
c):对称矩阵A的各阶顺序主子式全大于零,则其为正定.
注:设A为n阶方阵,则位于A的左上角的1阶,2阶,...,n阶子式,
即:称为A的各阶顺序主子式.

例1:判别二次型的正定性.
解:方法一:利用二次型的对称矩阵的特征值来判断.
先写出二次型的矩阵:
由于:
可得其全部特征值:>0,>0,>0
故此二次型为正定二次型.
方法二:利用二次矩阵的各阶顺序主子式来判定.
由于此二次型的矩阵为:
因为它的个阶顺序主子式:>0,>0,>0
故此二次型为正定二次型.

除了正定二次型外,还有其他类型的二次型。
定义:设有实二次型,如果对于任意一组不全为零的实数,都有f(x)<0,则称此二次型为负定二次型,对称矩阵A称为负定矩阵;如果都有f(x)≥0,则称此二次型为半正定二次型,并称其矩阵为半正定矩阵;如果都有f(x)≤0,则称此二次型为半负定二次型,并称其矩阵为半负定矩阵。

书上的转载
我常常自爆f4
2018-03-30 · TA获得超过4252个赞
知道小有建树答主
回答量:34
采纳率:0%
帮助的人:6224
展开全部

定义:设有实二次型,如果对于任意一组不全为零的实数,都有f(x)>0,则称此二次型为正定二次型,并把其对称矩阵A称为正定矩阵.
正定二次型的判别方法:

1):二次型标准形中n个系数都大于零,则其为正定;

2):二次型的对称矩阵A的n个特征值大于零,则其为正定;

3):对称矩阵A的各阶顺序主子式全大于零,则其为正定. 

注:设A为n阶方阵,则位于A的左上角的1阶,2阶,...,n阶子式,

即:称为A的各阶顺序主子式.

判别二次型的正定性.
解:方法一:利用二次型的对称矩阵的特征值来判断.
先写出二次型的矩阵:
由于:
可得其全部特征值:>0,>0,>0
故此二次型为正定二次型.
方法二:利用二次矩阵的各阶顺序主子式来判定.
由于此二次型的矩阵为:
因为它的个阶顺序主子式:>0,>0,>0
故此二次型为正定二次型.

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式