第二题第三题,求解

 我来答
斛瑾瑶0iD
2016-12-22 · TA获得超过412个赞
知道小有建树答主
回答量:1342
采纳率:0%
帮助的人:308万
展开全部
记住这样的结论"f(x)为奇函数则f'(x)为偶函数"
证明:只要证f'(-x)=f'(x)即可 用导数定义法
f'(x)=lim[f(x+Δx)-f(x)]/Δx
f'(-x)=lim[f(-x-Δx)-f(-x)]/-Δx
=lim[-f(x+Δx)+f(x)]/-Δx
=lim[f(x+Δx)-f(x)]/Δx=f'(x) 得证
同样可以证明"f'(x)为偶函数则f(x)为奇函数"

f'(x)=2+cosx>0是偶函数
则f(x)是[-2,2]上单调递增的奇函数
由f(1+x)+f(x-x²)>0
得f(1+x)>f(x²-x)
解1+x>x²-x
即x²-2x-1<0
再考虑定义域得(1-√2,1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式