第二题第三题,求解
1个回答
展开全部
记住这样的结论"f(x)为奇函数则f'(x)为偶函数"
证明:只要证f'(-x)=f'(x)即可 用导数定义法
f'(x)=lim[f(x+Δx)-f(x)]/Δx
f'(-x)=lim[f(-x-Δx)-f(-x)]/-Δx
=lim[-f(x+Δx)+f(x)]/-Δx
=lim[f(x+Δx)-f(x)]/Δx=f'(x) 得证
同样可以证明"f'(x)为偶函数则f(x)为奇函数"
f'(x)=2+cosx>0是偶函数
则f(x)是[-2,2]上单调递增的奇函数
由f(1+x)+f(x-x²)>0
得f(1+x)>f(x²-x)
解1+x>x²-x
即x²-2x-1<0
再考虑定义域得(1-√2,1)
证明:只要证f'(-x)=f'(x)即可 用导数定义法
f'(x)=lim[f(x+Δx)-f(x)]/Δx
f'(-x)=lim[f(-x-Δx)-f(-x)]/-Δx
=lim[-f(x+Δx)+f(x)]/-Δx
=lim[f(x+Δx)-f(x)]/Δx=f'(x) 得证
同样可以证明"f'(x)为偶函数则f(x)为奇函数"
f'(x)=2+cosx>0是偶函数
则f(x)是[-2,2]上单调递增的奇函数
由f(1+x)+f(x-x²)>0
得f(1+x)>f(x²-x)
解1+x>x²-x
即x²-2x-1<0
再考虑定义域得(1-√2,1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询