以下关于等价无穷小的常用替换,哪个是错误的 [A]x~sinx [B]x~tanx [C]~e^x
以下关于等价无穷小的常用替换,哪个是错误的[A]x~sinx[B]x~tanx[C]~e^x求高手解答...
以下关于等价无穷小的常用替换,哪个是错误的 [A]x~sinx [B]x~tanx [C]~e^x求高手解答
展开
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
3个回答
展开全部
等价无穷小 首先来看看什么是无穷小:
无穷小就是以数零为极限的变量.确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与零无限接近,即f(x)=0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量.例如,f(x)=(x-1)2是当x→1时的无穷小量,f(n)=是当n→∞时的无穷小量,f(x)=sinx是当x→0时的无穷小量.特别要指出的是,切不可把很小的数与无穷小量混为一谈.
这里值得一提的是,无穷小是可以比较的:
假设a、b都是lim的无穷小
如果lim b/a=0,就说b是比a高阶的无穷小,记作b=o(a)
比如b=1/x^2,a=1/x.x-无穷时,通俗的说,b时刻都比a更快地趋于0,所以称做是b高阶.假如有c=1/x^10,那么c比a b都要高阶,因为c更快地趋于0了.
如果lim b/a^n=常数,就说b是a的n阶的无穷小,b和a^n是同阶无穷小.
下面来介绍等价无穷小:
从无穷小的比较里可以知道,如果lim b/a^n=常数,就说b是a的n阶的无穷小,b和a^n是同阶无穷小.特殊地,如果这个常数是1,且n=1,即lim b/a=1,则称a和b是等价无穷小的关系,记作a~b
等价无穷小在求极限时有重要应用,我们有如下定理:假设lim a’、b~b’则:lim a/b=lim a’/b’
现在我们要求这个极限 lim(x→0) sin(x)/(x+3)
根据上述定理 当x→0时 sin(x)~x (重要极限一) x+3~x+3 ,那么lim(x→0) sin(x)/(x+3)=lim(x→0) x/(x+3)=0
重要的等价无穷小替换
sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2x^2 a^x-1~xlna e^x-1~x ln(1+x)~x
(1+Bx)^a-1~aBx [(1+x)^1/n]-1~1/nx loga(1+x)~1/lna x
无穷小就是以数零为极限的变量.确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与零无限接近,即f(x)=0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量.例如,f(x)=(x-1)2是当x→1时的无穷小量,f(n)=是当n→∞时的无穷小量,f(x)=sinx是当x→0时的无穷小量.特别要指出的是,切不可把很小的数与无穷小量混为一谈.
这里值得一提的是,无穷小是可以比较的:
假设a、b都是lim的无穷小
如果lim b/a=0,就说b是比a高阶的无穷小,记作b=o(a)
比如b=1/x^2,a=1/x.x-无穷时,通俗的说,b时刻都比a更快地趋于0,所以称做是b高阶.假如有c=1/x^10,那么c比a b都要高阶,因为c更快地趋于0了.
如果lim b/a^n=常数,就说b是a的n阶的无穷小,b和a^n是同阶无穷小.
下面来介绍等价无穷小:
从无穷小的比较里可以知道,如果lim b/a^n=常数,就说b是a的n阶的无穷小,b和a^n是同阶无穷小.特殊地,如果这个常数是1,且n=1,即lim b/a=1,则称a和b是等价无穷小的关系,记作a~b
等价无穷小在求极限时有重要应用,我们有如下定理:假设lim a’、b~b’则:lim a/b=lim a’/b’
现在我们要求这个极限 lim(x→0) sin(x)/(x+3)
根据上述定理 当x→0时 sin(x)~x (重要极限一) x+3~x+3 ,那么lim(x→0) sin(x)/(x+3)=lim(x→0) x/(x+3)=0
重要的等价无穷小替换
sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2x^2 a^x-1~xlna e^x-1~x ln(1+x)~x
(1+Bx)^a-1~aBx [(1+x)^1/n]-1~1/nx loga(1+x)~1/lna x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
A,B都是正确的,C选项不完整
e^x~(1+x)
e^x~(1+x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询