∫1-x/√9-4x² dx
4个回答
展开全部
答案是(9/4)arcsin(⅔x)+ ½x·√(9-4x²) +C
具体步骤如下:
令x=(3/2)sint,则t=arcsin(⅔x)
∫√(9-4x²)dx
=∫√[9-4·(3sint/2)²]d[(3/2)sint]
=∫3cost·(3/2)costdt
=(9/4)∫2cos²tdt
=(9/4)∫(1+cos2t)dt
=(9/4)(t+½sin2t) +C
=(9/4)(t+sintcost) +C
=(9/4)[arcsin(⅔x)+⅔x·√(9-4x²)/3] +C
=(9/4)arcsin(⅔x)+ ½x·√(9-4x²) +C
扩展资料
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
展开全部
换元x=3/2sint
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |