高考数学函数问题!看不懂解析,若按解析的分析,d为何不行
1个回答
展开全部
题目中并没有f(x)的具体定义,因此假设f(x)=...,是没有道理的。此类题目,属于泛函分析的内容,已经超出中学教学大纲。
f(x)可以是任意函数,max(|x|,2^a)是其下限。f(x)的所有可能,构成一个平面区域,就是xOy坐标系中,位于y=|x|,y=2^a的以上部分。是一个像水渠断面的无限空间:
\_/
两边是y=|x|,下面是y=2^a,底的两个交点是左(-2^a,2^a),右(2^a,2^a)
a可能是正数,也可能是负数,对于确定的a,2^a是常数。
f(a)≤|b|,如果|b|≤2^a,y=|b|在水渠底面以下,a是任何数都不可能;如果|b|>2^a,y=|b|到了水渠底面以上,与水渠侧边交于(-|b|,|b|),(|b|,|b|),
则当-|b|≤a≤|b|时,才有可能(注意,绝对不是必然!因为不知道f(x)的准确位置)f(a)≤|b|,a<-|b|或者a>|b|时,必然有f(a)>|b|。因此A不正确。
C可以用与A相同的方法讨论:f(a)≥|b|如果|b|≤2^a,y=|b|在水渠底面以下,x是任何数都可以f(x)≥|b|,当然f(a)≥|b|;如果|b|>2^a,y=|b|到了水渠底面以上,与水渠侧边交于(-|b|,|b|),(|b|,|b|),a≤-|b|或者a≤|b|时,必然有f(a)≥|b|;
则当-|b|≤a≤|b|时,才有可能(注意,绝对不是必然!因为不知道f(x)的准确位置)f(a)<|b|,但是,绝对不是必然有此关系,不能排除此区间f(a)≥|b|可能成立。因此C不是必然的。
B,f(a)≤2^b,如果可能成立,必然(!)有y=2^b与水渠相交于渠底y=2^a之上,2^b≥2^a,且-2^b≤a≤2^b,y=2^x是增函数,2^b≥2^a,因此b≥a,成立。|a|≤2^b,b≥log2(|a|),b≥max(a,log2(|a|))。
D,讨论同上,f(a)≥2^b,如果2^b≤2^a,b≤a,y=2^b,位于水渠底y=2^a以下,2^b≤2^a,b≤a,不论x是何值,f(x)≥2^b恒成立;如果2^b>2^a,b>a,y=2^b,位于水渠底y=2^a以上,当a≤-2^b,或者a≥2^b,|a|≥2^b,b≤log2(|a|),b≤min(a,log2(|a|)),时,f(a)≥2^b必然成立,但是不能排除-2^b≤a≤2^b时f(a)≥2^b成立,只能说,有可能不成立。
f(x)可以是任意函数,max(|x|,2^a)是其下限。f(x)的所有可能,构成一个平面区域,就是xOy坐标系中,位于y=|x|,y=2^a的以上部分。是一个像水渠断面的无限空间:
\_/
两边是y=|x|,下面是y=2^a,底的两个交点是左(-2^a,2^a),右(2^a,2^a)
a可能是正数,也可能是负数,对于确定的a,2^a是常数。
f(a)≤|b|,如果|b|≤2^a,y=|b|在水渠底面以下,a是任何数都不可能;如果|b|>2^a,y=|b|到了水渠底面以上,与水渠侧边交于(-|b|,|b|),(|b|,|b|),
则当-|b|≤a≤|b|时,才有可能(注意,绝对不是必然!因为不知道f(x)的准确位置)f(a)≤|b|,a<-|b|或者a>|b|时,必然有f(a)>|b|。因此A不正确。
C可以用与A相同的方法讨论:f(a)≥|b|如果|b|≤2^a,y=|b|在水渠底面以下,x是任何数都可以f(x)≥|b|,当然f(a)≥|b|;如果|b|>2^a,y=|b|到了水渠底面以上,与水渠侧边交于(-|b|,|b|),(|b|,|b|),a≤-|b|或者a≤|b|时,必然有f(a)≥|b|;
则当-|b|≤a≤|b|时,才有可能(注意,绝对不是必然!因为不知道f(x)的准确位置)f(a)<|b|,但是,绝对不是必然有此关系,不能排除此区间f(a)≥|b|可能成立。因此C不是必然的。
B,f(a)≤2^b,如果可能成立,必然(!)有y=2^b与水渠相交于渠底y=2^a之上,2^b≥2^a,且-2^b≤a≤2^b,y=2^x是增函数,2^b≥2^a,因此b≥a,成立。|a|≤2^b,b≥log2(|a|),b≥max(a,log2(|a|))。
D,讨论同上,f(a)≥2^b,如果2^b≤2^a,b≤a,y=2^b,位于水渠底y=2^a以下,2^b≤2^a,b≤a,不论x是何值,f(x)≥2^b恒成立;如果2^b>2^a,b>a,y=2^b,位于水渠底y=2^a以上,当a≤-2^b,或者a≥2^b,|a|≥2^b,b≤log2(|a|),b≤min(a,log2(|a|)),时,f(a)≥2^b必然成立,但是不能排除-2^b≤a≤2^b时f(a)≥2^b成立,只能说,有可能不成立。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询