空间曲线参数方程的形式如何求切线方程和 法平面方程。

 我来答
112hm
高粉答主

2019-01-12 · 每个回答都超有意思的
知道小有建树答主
回答量:911
采纳率:0%
帮助的人:34.6万
展开全部

曲线的参数方程为:{x=t-sint,y=1-cost,z=4sin(t/2) ,

分别对t求导,得 x '=1-cost,y '=sint,z '=2cos(t/2) ,

将 t0=π/2 分别代入,可得切点坐标为(π/2-1,1,2√2),

切线方向向量 v=(1,1,√2),

所以,切线方程为 (x-π/2+1)/1=(y-1)/1=(z-2√2)/√2 ,

平面方程为 1*(x-π/2+1)+1*(y-1)+√2*(z-2√2)=0 。

扩展资料:

参数方程的应用

柯西中值定理的证明中,也运用到了参数方程。

柯西中值定理

如果函数f(x)及F(x)满足:

⑴在闭区间[a,b]上连续;

⑵在开区间(a,b)内可导;

⑶对任一x∈(a,b),F'(x)≠0。

那么在(a,b)内至少有一点ζ,使等式

[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。

柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。

参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。

譬如一个圆柱:

r(u,v)=[x(u,v),y(u,v),z(u,v)]=[acos(u),asin(u),v]

参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。

这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。

用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。

根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。

参考资料来源:百度百科--空间曲线

参考资料来源:百度百科--切线方程

东莞大凡
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研... 点击进入详情页
本回答由东莞大凡提供
北风胡晓
2017-03-06 · TA获得超过517个赞
知道小有建树答主
回答量:1644
采纳率:0%
帮助的人:524万
展开全部
曲线的参数方程为 {x=t-sint,y=1-cost,z=4sin(t/2) ,
分别对 t 求导,得 x '=1-cost,y '=sint,z '=2cos(t/2) ,
将 t0=π/2 分别代入,可得切点坐标为(π/2-1,1,2√2),
切线方向向量 v=(1,1,√2),
所以,切线方程为 (x-π/2+1)/1=(y-1)/1=(z-2√2)/√2 ,
法平面方程为 1*(x-π/2+1)+1*(y-1)+√2*(z-2√2)=0 .
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式