解:分享一种解法,用“
无穷小量替换+
洛必达法则”求解。
∵x→0时,ln(1+x)~x、tanx~x、e^x~1+x、xlnx→0,
∴原式=lim(x→0)[e^(xlnx)-e^(xlnsinx)]/[(tanx)(sinx)^2]=lim(x→0)(cosx)(x/sinx)(lnx-lnsinx)]/(sinx)^2。
而,lim(x→0)cosx=1、lim(x→0)x/sinx=1、lim(x→0)(lnx-lnsinx)]/(sinx)^2=lim(x→0)(sinx-xcosx/[xsinx(sin2x)]=1/6,
∴原式=1*1*1/6=1/6。