求数学极限 这两道题。详细过程,拜托了! 10
1个回答
展开全部
lim(n->∞) [ 2^(1/n) - 2^(1/(n+1) ) ]
= ( 2^0 -2^0 )
=0
lim(x->∞) [ sin(2/x)+cos(1/x) ]^x
let
y=1/x
lim(x->∞) [ sin(2/x)+cos(1/x) ]^x
=lim(y->0) [ sin(2y)+cosy ]^(1/y)
x->0
sin2x +cosy ~ 1+2y
lim(x->∞) [ sin(2/x)+cos(1/x) ]^x
=lim(y->0) [ sin(2y)+cosy ]^(1/y)
=lim(y->0) ( 1+ 2y )^(1/y)
=lim(z->0) ( 1+ z )^(2/z) ( z=2y)
=e^2
= ( 2^0 -2^0 )
=0
lim(x->∞) [ sin(2/x)+cos(1/x) ]^x
let
y=1/x
lim(x->∞) [ sin(2/x)+cos(1/x) ]^x
=lim(y->0) [ sin(2y)+cosy ]^(1/y)
x->0
sin2x +cosy ~ 1+2y
lim(x->∞) [ sin(2/x)+cos(1/x) ]^x
=lim(y->0) [ sin(2y)+cosy ]^(1/y)
=lim(y->0) ( 1+ 2y )^(1/y)
=lim(z->0) ( 1+ z )^(2/z) ( z=2y)
=e^2
追答
那好!
n->∞
1/n ->0 , 1/(n+1) ->0
lim(n->∞) [ 2^(1/n) - 2^(1/(n+1) ) ]
= ( 2^0 -2^0 )
=0
(40)
等价无穷小
y->0
sin2y ~ 2y
cosy ~ 1-(1/2)y^2 ~ 1
lim(x->∞) [ sin(2/x)+cos(1/x) ]^x
=lim(y->0) [ sin(2y)+cosy ]^(1/y)
=lim(y->0) ( 1+ 2y )^(1/y)
=lim(z->0) ( 1+ z )^(2/z) ( z=2y)
=e^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询