请教各位大侠全桥变换副边整流二极管缓冲电路的问题
1个回答
展开全部
1 副边整流二极管的反向恢复过程 实际上已导通的二极管在突然加上反向电压的一段时间内,电流下降到零以后,它并不立刻停止导通,还处于反向低阻状态。此时在反向电压作用下,载流子进入复合过程,于是在反方向继续流过电流;当载流子复合完毕,反向电流才迅速衰减到零。这个阶段就是二极管的反向恢复过程,如图1所示。 在反向电流衰减过程中,电路产生强烈的过渡过程,它在关断元件两端产生极高的过电压,即换流过电压;另外,因电流衰减时在关断元件上同时存在电流与电压,在元件中瞬时产生极大的功率,即所谓关断功率。 二极管振荡的等效电路如图2所示。 图中,Lk为变压器的漏感,Lp为二极管的串联寄生电感,Cp为二极管的并联寄生电容,D为理想二极管。 当副边电压为零时,在全桥整流器中四个二极管全部导通,输出滤波电感电流处于自然续流状态。而当副边电压变化为高电压U2时,整流桥中有两只二极管要关断,两只二极管继续导通。这时变压器的漏感和整流管的串联寄生电感Lp就开始与整流管的并联寄生电容Cp之间产生寄生振荡。二极管电流与电压波形呈指数衰减的高频振荡波形,在二极管关断瞬间会产生很高反向电压浪涌。它的存在不但增加了二极管的功耗,而且也对输出电能质量产生很大影响。特别是在大功率应用中,巨大的电压尖峰很有可能造成二极管的过压击穿。因此在设计中应予以特别关注。 2 减小电压尖峰的对策 整流二极管的反向恢复时间除由器件本身的性能决定外,还受许多电路因素的影响。包括其导通时流过的正向电流的大小、正向电流的下降速率、反向电压的大小以及反向电压的上升速率等。 反向电流i是产生电压尖峰的根源,减小i的数值无疑是抑制尖峰的根本措施。选用合适的整流二极管,例如:快恢复二极管,虽然反向恢复时间短,反向恢复损耗小,但恢复特性较硬,电压尖峰仍然很大。可适当选用恢复特性相对较软(tb/ta值小)的软快恢复二极管。另外适当加大二极管电流容量或者多管并联以减小通过每只管的正向电流都能对抑制电压尖峰起到积极的影响。合理的布局布线,减小变压器漏感及引线电感,从而减小振荡也是一个抑制尖峰的根本方法。 当器件选好,布线完毕后,我们还能通过外加缓冲电路的办法抑制电压尖峰。常用的缓冲电路有以下几种: (1)RC吸收电路 解决功率二极管反向恢复问题最常见的办法是采用RC吸收电路,它是在每个二极管上并联一个R和C的串联支路。RC吸收电路如图3所示二极管反向关断时,寄生电感中的能量对寄生电容充电,同时还通过吸收电阻R对吸收电容C充电。在吸收同样能量的情况下,吸收电容越大,其上的电压就越小;当二极管快速正向导通时,C通过R放电,能量的大部分将消耗在R上。虽然这种吸收网络能够有效的抑制反向电压尖峰,但是它是有损耗的,相当于把整流二极管的关断损耗转移到了RC吸收电路上,不利于提高变换器的效率。
创远信科
2024-07-24 广告
2024-07-24 广告
无源谐振腔是一种光学装置,其特点在于不需要外部能源驱动,通过腔体结构自身的特性来实现光的谐振和增强。在激光技术中,无源谐振腔设计对于提高激光输出性能至关重要。腔体的形状、长度、稳定性以及精细度等参数,决定了谐振腔的性能和光谱分辨率。通过精确...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询