设F1F2分别是椭圆x²/25+y²/16=1的左右焦点,P为椭圆上一点M是F1P的中点|OM|=3
设F1F2分别是椭圆x²/25+y²/16=1的左右焦点,P为椭圆上一点M是F1P的中点|OM|=3则P点到椭圆左焦点的距离为...
设F1F2分别是椭圆x²/25+y²/16=1的左右焦点,P为椭圆上一点M是F1P的中点|OM|=3则P点到椭圆左焦点的距离为
展开
展开全部
a=5;b=4;c=3;∣OM∣=3,∣OF₁∣=3;F₁(-3,0);
设P点的坐标为(5cost, 4sint);M点的坐标为(x,y);
M是F₁P的锋缓模中点;故x=(5cost-3)/2;y=(4sint)/2;
∣OF₁∣=√(x²+y²)=√[(5cost-3)²/4+(4sint)²/4]=3
∴25cos²t-30cost+9+16sin²t=36
9cos²t-30cost+25=36;即9cos²t-30cost-11
=(3cost+1)(3cost-11)=0
∴cost₁=-1/3;cost₂=-11/哪瞎3(舍去).
sint₁=√(1-1/银缓9)=(2/3)√2;
∴x=(5cost-3)/2=(-5/3-3)/2=-7/3; y=(4sint)/2=(4/3)√2;
∴∣F₁P∣=2∣F₁M∣=2√[(x+3)²+y²]=2√[(-7/3+3)²+2(4/3)²]
=2√[(4/9)+(32/9)]=2√(36/9)=2×(6/3)=4.
设P点的坐标为(5cost, 4sint);M点的坐标为(x,y);
M是F₁P的锋缓模中点;故x=(5cost-3)/2;y=(4sint)/2;
∣OF₁∣=√(x²+y²)=√[(5cost-3)²/4+(4sint)²/4]=3
∴25cos²t-30cost+9+16sin²t=36
9cos²t-30cost+25=36;即9cos²t-30cost-11
=(3cost+1)(3cost-11)=0
∴cost₁=-1/3;cost₂=-11/哪瞎3(舍去).
sint₁=√(1-1/银缓9)=(2/3)√2;
∴x=(5cost-3)/2=(-5/3-3)/2=-7/3; y=(4sint)/2=(4/3)√2;
∴∣F₁P∣=2∣F₁M∣=2√[(x+3)²+y²]=2√[(-7/3+3)²+2(4/3)²]
=2√[(4/9)+(32/9)]=2√(36/9)=2×(6/3)=4.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询