三角函数求值域的经典习题
1个回答
展开全部
y=√2cos(x/2)-√cosx
y'=-√2/2sin(x/2)+sinx/2√cosx
=-√2/2sin(x/2)+sin(x/2)cos(x/2)/√cosx
=sin(x/2)(cos(x/2)/√cosx-√2/2)
令f(x)=cos(x/2)/√cosx-√2/2
f'(x)=[-1/2sin(x/2)·√cosx+cos(x/2)·sinx/2√cosx]/cosx
=[-sin(x/2)·cosx+cos(x/2)·sinx/2]/2(√cosx)cosx
驻点x=0 为极小值点
∴f(x)≥f(0)=1-√2/2>0
∴y'=0→sinx=0→x=0
y最小值=y(0)=√2-1
∵y是偶函数
∴y最大值=y(±π/2)=√2
y∈[1-√2/2,√2]
y'=-√2/2sin(x/2)+sinx/2√cosx
=-√2/2sin(x/2)+sin(x/2)cos(x/2)/√cosx
=sin(x/2)(cos(x/2)/√cosx-√2/2)
令f(x)=cos(x/2)/√cosx-√2/2
f'(x)=[-1/2sin(x/2)·√cosx+cos(x/2)·sinx/2√cosx]/cosx
=[-sin(x/2)·cosx+cos(x/2)·sinx/2]/2(√cosx)cosx
驻点x=0 为极小值点
∴f(x)≥f(0)=1-√2/2>0
∴y'=0→sinx=0→x=0
y最小值=y(0)=√2-1
∵y是偶函数
∴y最大值=y(±π/2)=√2
y∈[1-√2/2,√2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询