定积分0到1∫xln(x+1)等于多少 求过程
展开全部
∫xln(x+1)dx
=∫ln(x+1)d(1/2*x^2)
=1/2×x^2×ln(x+1)-1/2×∫x^2dln(x+1)
=1/2×x^2×ln(x+1)-1/2×∫x^2/(x+1)dx
=1/2×x^2×ln(x+1)-1/2×∫[x-1+1/(x+1)]dx
=1/2×x^2×ln(x+1)-1/2×[1/2×x^2-x+ln(x+1)]+C
=1/2×(x^2-1)×ln(x+1)-1/4×(x^2-2x)+C
代入结果为1/4.
=∫ln(x+1)d(1/2*x^2)
=1/2×x^2×ln(x+1)-1/2×∫x^2dln(x+1)
=1/2×x^2×ln(x+1)-1/2×∫x^2/(x+1)dx
=1/2×x^2×ln(x+1)-1/2×∫[x-1+1/(x+1)]dx
=1/2×x^2×ln(x+1)-1/2×[1/2×x^2-x+ln(x+1)]+C
=1/2×(x^2-1)×ln(x+1)-1/4×(x^2-2x)+C
代入结果为1/4.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询