√(ⅹ+1)+√x的单调区间
1个回答
2017-10-12
展开全部
解f(x)=√(x^2+1)-x,定义域为R
设x1<x2
则f(x1)-f(x2)
=[√(x1^2+1)-x1]-[√(x2^2+1)-x2]
=1/[√(x1^2+1)+x1]-1/[√(x2^2+1)+x2]
=[[√(x2^2+1)+x2]-[√(x1^2+1)+x1]]/[√(x1^2+1)+x1][√(x2^2+1)+x2]
=[[√(x2^2+1)-√(x1^2+1)]+(x2-x1)]/[√(x1^2+1)+x1][√(x2^2+1)+x2]
=[(x2^2-x1^2)/[√(x2^2+1)+√(x1^2+1)]+(x2-x1)]/[√(x1^2+1)+x1][√(x2^2+1)+x2]
=(x2-x1)[(x2+x1)/[√(x2^2+1)+√(x1^2+1)]+1]/[√(x1^2+1)+x1][√(x2^2+1)+x2]
=(x2-x1)[(x2+x1)/[√(x2^2+1)+√(x1^2+1)]+[√(x2^2+1)+√(x1^2+1)]/[√(x2^2+1)+√(x1^2+1)]]/[√(x1^2+1)+x1][√(x2^2+1)+x2]
=(x2-x1)[(x2+√(x2^2+1)+x1+√(x1^2+1))/[√(x2^2+1)+√(x1^2+1)]]/[√(x1^2+1)+x1][√(x2^2+1)+x2]
注意到x2+√x2^2+1>0,x1+√x1^2+1>0
知(x2+√x2^2+1)+(x1+√x1^2+1)>0
又由x1<x2,即x2-x1>0
即(x2-x1)[(x2+√(x2^2+1)+x1+√(x1^2+1))/[√(x2^2+1)+√(x1^2+1)]]/[√(x1^2+1)+x1][√(x2^2+1)+x2]>0
即f(x1)-f(x2)>0
即
函数F(X)=[根号(X²+1)]-X是减函数
知函数的减区间为R.
设x1<x2
则f(x1)-f(x2)
=[√(x1^2+1)-x1]-[√(x2^2+1)-x2]
=1/[√(x1^2+1)+x1]-1/[√(x2^2+1)+x2]
=[[√(x2^2+1)+x2]-[√(x1^2+1)+x1]]/[√(x1^2+1)+x1][√(x2^2+1)+x2]
=[[√(x2^2+1)-√(x1^2+1)]+(x2-x1)]/[√(x1^2+1)+x1][√(x2^2+1)+x2]
=[(x2^2-x1^2)/[√(x2^2+1)+√(x1^2+1)]+(x2-x1)]/[√(x1^2+1)+x1][√(x2^2+1)+x2]
=(x2-x1)[(x2+x1)/[√(x2^2+1)+√(x1^2+1)]+1]/[√(x1^2+1)+x1][√(x2^2+1)+x2]
=(x2-x1)[(x2+x1)/[√(x2^2+1)+√(x1^2+1)]+[√(x2^2+1)+√(x1^2+1)]/[√(x2^2+1)+√(x1^2+1)]]/[√(x1^2+1)+x1][√(x2^2+1)+x2]
=(x2-x1)[(x2+√(x2^2+1)+x1+√(x1^2+1))/[√(x2^2+1)+√(x1^2+1)]]/[√(x1^2+1)+x1][√(x2^2+1)+x2]
注意到x2+√x2^2+1>0,x1+√x1^2+1>0
知(x2+√x2^2+1)+(x1+√x1^2+1)>0
又由x1<x2,即x2-x1>0
即(x2-x1)[(x2+√(x2^2+1)+x1+√(x1^2+1))/[√(x2^2+1)+√(x1^2+1)]]/[√(x1^2+1)+x1][√(x2^2+1)+x2]>0
即f(x1)-f(x2)>0
即
函数F(X)=[根号(X²+1)]-X是减函数
知函数的减区间为R.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询