这是一道数学题。请问第二题怎么写 10
解:对方程两边同时求导:2y*y'=2p,y'=p/y=p/(2px)=(1/2x)(在第一象限是增函数,不取负值;)当x=p/2时,y'=1/(2p/2)=1/p,过这一点法线的斜率为,k=-1/(1/p)=-p,设法线方程为:y=-px+b.代入(p/2,p)得:p=-p*p/2+b;b=p^2/2+p; 即:法线方程为:y=-px+p^2/2+p......(1)。 将(1)代入抛物线方程,得:(-px+p^2/2+p)^2=2px,即:(px)^2-(p^2+2p)px+(p^2/2+p)^2=2px; 即:(px)^2-(p^2+2p+2)(px)+(p^2/2+p)^2=0; △=[-(p^2+2p+2)]^2-4(p^2/2+p)^2=(p^2+2p+2)^2-(p^2+2p)^2=[(p^2+2p+2)+(p^2+2p)][(p^2+2p+2)-(p^2+2p)]=(2p^2+4p+2)*2=4(p^2+2p+1) =[2(p+1)]^2; px1,2=[(p^2+2p+2)+/-2(p+1)]/2;x1=(p^2+4p+3)/2p,和x2=p^2/2p=p/2; 下面求p:
y1=-√(2px1)=-√[2p(p^2+4p+3)/2p]=-√(p^2+4p+3); √[y1^2+(x1-p/2)^2]=y1+p/2;方程两边同时平方,得:y1^2+(x1-p/2)^2=y1^2+py1+p^2/4; (x1-p/2)^2-p^2/4=py1;方程两边同时平方,并将x1代入,得:{[(p^2+4p+3)/2p-p/2]-p^2/4}^2=(2+3/2p-p^2/2)^2 =p^2y1^2 =p^2(p^2+4p+3)=p^4+4p^3+3p^2; 方程两边同时乘以4p^2,得: (p^3-4p-3)^2=p^6-2(4p+3)p^3+16p^2+24p+9=4p^6+16p^5+12p^4;整理,得:3p^6+16p^5+20p^4+3p^3-16p^2-24p-9=0;无法求解p。求黄色部分的面积S:AB线:x=y/p-p/2-1; 抛物线:x=y^2/2p, B((p^2+4p+3)/2p,-√(p^2+4p+3)), A(p/2,p);
S=[p/2+(p^2+4p+3)/2p]*[p+√(p^2+4p+3)]/2+积分(-√(p^2+4p+3)到p) (y^2/2p)dy =[p^2+2p+3/2+(p+2+2/2p)√(p^2+4p+3)]/2+y^3/6p|(-√(p^2+4p+3)到p)
=[p^2+2p+3/2+(p+2+2/2p)√(p^2+4p+3)]/2+p^3/6p+[-√(p^2+4p+3)]^3/6p
=2p^2/3+p+3/4+(6p^2+12p+6-p^2-4p-3)√(p^2+4p+3)/6p
2y·y'=2p。在点(p/2,p),y'=1。于是可知法线的斜率为-1,法线方程为
y=p-(x-p/2)=3p/2-x。
你的问题是要求这个图形的面积,是吗?联立y^2=2px, y=3p/2 -x,(9p^2/4-5px+x^2=0,)解得交点(p/2,p)和(9p/2,-3p),
再利用积分计算面积。