[1–x^2^(n 1)]/1-x,当n→∞,极限是什么。
4个回答
展开全部
lim x→∞,(1+x)^(1/x)
=lim x→∞,e^[ln((1+x)^(1/x))]
=lim x→∞,e^[(1/x)×ln(1+x)]
其中e的指数部分lim x→∞,(1/x)×ln(1+x)=lim x→∞,[ln(1+x)]/x
∞/∞型,使用洛必达法则,上下同时求导,得到:
lim x→∞,[1/(1+x)]/1=0
所以e的指数部分极限是0,原式=lim x→∞,e^0=1。
求极限基本方法有:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。
3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
展开全部
答案是1/(1-x),当n趋近于无穷大时,x^2^(n+1)趋近于0,你这应该还要一个条件|x|<1对吧,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2018-04-06
展开全部
lim x→∞,(1+x)^(1/x)
=lim x→∞,e^[ln((1+x)^(1/x))]
=lim x→∞,e^[(1/x)×ln(1+x)]
其中e的指数部分lim x→∞,(1/x)×ln(1+x)=lim x→∞,[ln(1+x)]/x
∞/∞型,使用洛必达法则,上下同时求导,得到
lim x→∞,[1/(1+x)]/1=0
所以e的指数部分极限是0,原式=lim x→∞,e^0=1
=lim x→∞,e^[ln((1+x)^(1/x))]
=lim x→∞,e^[(1/x)×ln(1+x)]
其中e的指数部分lim x→∞,(1/x)×ln(1+x)=lim x→∞,[ln(1+x)]/x
∞/∞型,使用洛必达法则,上下同时求导,得到
lim x→∞,[1/(1+x)]/1=0
所以e的指数部分极限是0,原式=lim x→∞,e^0=1
追问
那个,大佬,x是系数,n是因数,n趋近于无穷时候求极限
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询