一阶线性微分方程求特解(附图)
1个回答
展开全部
let
u= (x^3+1)y
du/dx = (x^3+1) dy/dx + 3x^2. y
//
y' +3x^2.y/(x^3+1) = y^2.(x^3+1). sinx
(x^3+1)y' +3x^2.y = y^2.(x^3+1)^2. sinx
du/dx = u^2 .sinx
∫ du/u^2 = ∫ sinx dx
1/u = cosx +C
1/[(x^3+1)y] = cosx +C
y(0) =1
1= 1 +C
=> C=0
1/[(x^3+1)y] = cosx
y= 1/[cosx .(x^3+1)]
u= (x^3+1)y
du/dx = (x^3+1) dy/dx + 3x^2. y
//
y' +3x^2.y/(x^3+1) = y^2.(x^3+1). sinx
(x^3+1)y' +3x^2.y = y^2.(x^3+1)^2. sinx
du/dx = u^2 .sinx
∫ du/u^2 = ∫ sinx dx
1/u = cosx +C
1/[(x^3+1)y] = cosx +C
y(0) =1
1= 1 +C
=> C=0
1/[(x^3+1)y] = cosx
y= 1/[cosx .(x^3+1)]
更多追问追答
追问
y(0)=1还要求特解 答案是y=secx/(x^3+1)。。。
追答
let
u= (x^3+1)y
du/dx = (x^3+1) dy/dx + 3x^2. y
//
y' +3x^2.y/(x^3+1) = y^2.(x^3+1). sinx
(x^3+1)y' +3x^2.y = y^2.(x^3+1)^2. sinx
du/dx = u^2 .sinx
∫ du/u^2 = ∫ sinx dx
1/u = cosx +C
1/[(x^3+1)y] = cosx +C
y(0) =1
1= 1 +C
=> C=0
1/[(x^3+1)y] = cosx
y= 1/[cosx .(x^3+1)]
= secx/(x^3+1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
系科仪器
2024-08-02 广告
2024-08-02 广告
椭偏仪建模过程涉及光学测量与物理建模的结合。首先,通过椭偏仪收集材料表面反射光的偏振态变化数据。随后,利用这些数据,结合菲涅耳反射系数等理论,进行物理建模。建模过程中需调整材料的光学色散参数与薄膜的3D结构参数,以反向拟合出材料的实际光学特...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询