求不定积分∫x√(x-3)dx
4个回答
展开全部
^t=√bai(x-3),x=t^du2+3,dx=2tdt
∫zhix/√dao(x-3) dx
=∫(t^2+3)/t*2tdt
=∫(2t^2+3)dt
=2/3*t^3+3t+c
=2/3*(x-3)^(3/2)+3*(x-3)^(1/2)+c
扩展资料:
定积分把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距是相等的。但是必须指出,即使不相等,积分值仍然相同。
定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询