求大神帮忙
1个回答
展开全部
已知α为锐角,且cos[α+(π/4)]=√5/5
所以,sin[α+(π/4)]=2√5/5
则,tan[α+(π/4)]=sin[α+(π/4)]/cos[α+(π/4)]=2
==> [tanα+tan(π/4)]/[1-tanαtan(π/4)]=2
==> (tanα+1)/(1-tanα)=2
==> tanα+1=2-2tanα
==> tanα=1/3
则,sin2α=2tanα/(1+tan²α)=(2/3)/[1+(1/9)]=(2/3)/(10/9)=3/5
则,cos2α=4/5
所以,sin[2α+(π/3)]=sinαcos(π/3)+cosαsin(π/3)
=(3/5)·(1/2)+(4/5)·(√3/2)
=(3+4√3)/10
所以,sin[α+(π/4)]=2√5/5
则,tan[α+(π/4)]=sin[α+(π/4)]/cos[α+(π/4)]=2
==> [tanα+tan(π/4)]/[1-tanαtan(π/4)]=2
==> (tanα+1)/(1-tanα)=2
==> tanα+1=2-2tanα
==> tanα=1/3
则,sin2α=2tanα/(1+tan²α)=(2/3)/[1+(1/9)]=(2/3)/(10/9)=3/5
则,cos2α=4/5
所以,sin[2α+(π/3)]=sinαcos(π/3)+cosαsin(π/3)
=(3/5)·(1/2)+(4/5)·(√3/2)
=(3+4√3)/10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询