一道极限题求解 5

f(x)无法得知是否趋向于0,即[f(x)+cosx-1]→0是否趋向于0???为何能直接使用第二重要极限?解题过程如下图... f(x)无法得知是否趋向于0,即 [f(x)+cosx-1]→0 是否趋向于0??? 为何能直接 使用 第二重要极限?解题过程如下图 展开
 我来答
百度网友8362f66
2019-03-15 · TA获得超过8.3万个赞
知道大有可为答主
回答量:8690
采纳率:83%
帮助的人:3391万
展开全部
分享一种解法。∵lim(x→0)[f(x)+cosx]^(1/x)=e^{lim(x→0)(1/x)ln[f(x)+cosx]},
∴lim(x→0)(1/x)ln[f(x)+cosx]=3。∴(1/x)ln[f(x)+cosx]比为“0/0”型。
洛必达法则,有lim(x→0)(1/x)ln[f(x)+cosx]=lim(x→0)[f'(x)-sinx]/[f(x)+cosx]=3。
又,f(x)连续,且f'(0)存在,∴f'(0)=3[1+f(0)]。
供参考。
追问
谢谢回答,我的主要疑惑是解题方案为何可以使用第二重要极限?
题干中哪个条件 能够体现 出limf(x)→0 ? (x→0) 望答复谢谢。
追答
lim(x→0)[f(x)+cosx]^(1/x)=e^{lim(x→0)(1/x)ln[f(x)+cosx]},是恒等变形。题设条件中,可以能得出f(0)=0存在。∵(1/x)ln[f(x)+cosx]为“0/0”型,∴f(x)+cosx=1。而,f(x)、cosx均为连续函数,∴f(0)=0。
∴f'(0)=3。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式