求定积分,如图?
2个回答
展开全部
∫(0->2π) [ (1/a^2)(cosx)^2 + (1/b^2) (sinx)^2 ] dx
=(1/2) ∫(0->2π) [ (1/a^2)(1+cos2x) + (1/b^2) (1-cos2x) ] dx
=(1/2) [ (1/a^2)(x+ (1/2)sin2x) + (1/b^2) (x- (1/2)sin2x) ] |(0->2π)
=(1/2) [ (1/a^2) +(1/b^2) ](2π)
=π . (1/a^2 +1/b^2 )
=(1/2) ∫(0->2π) [ (1/a^2)(1+cos2x) + (1/b^2) (1-cos2x) ] dx
=(1/2) [ (1/a^2)(x+ (1/2)sin2x) + (1/b^2) (x- (1/2)sin2x) ] |(0->2π)
=(1/2) [ (1/a^2) +(1/b^2) ](2π)
=π . (1/a^2 +1/b^2 )
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询