如图求积分
4个回答
展开全部
令 √x = u, 则
I = ∫<2, 3> u(2udu)/(u-1) = 2∫<2, 3> (u^2-u+u-1+1)du/(u-1)
= 2∫<2, 3> [u+1+1/(u-1)]du
= 2[u^2/2+u+ln(u-1)]<2, 3> = 2(9/2+3+ln2-2-2) = 7+2ln2
I = ∫<2, 3> u(2udu)/(u-1) = 2∫<2, 3> (u^2-u+u-1+1)du/(u-1)
= 2∫<2, 3> [u+1+1/(u-1)]du
= 2[u^2/2+u+ln(u-1)]<2, 3> = 2(9/2+3+ln2-2-2) = 7+2ln2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x^2-x = (x-1/2)^2 -1/4
let
x-1/2 =(1/2)secu
dx= (1/2)secu.tanu du
x=4 , u = arcsec(7)
x=9, u =arcsec(17)
∫ (4->9) √x/√(x-1) dx
=∫ (4->9) x /√(x^2-x) dx
=∫ (arcsec7->arcsec17) { [(1/2)+(1/2)secu] /[(1/2)tanu] } . [ (1/2)secu.tanu du]
=(1/2)∫ (arcsec7->arcsec17) (1+secu)secu du
=(1/2) [ ln|secu+tanu| + tanu ]| (arcsec7->arcsec17)
=(1/2) [ ( ln|17+√288| + √288 ) - ( ln|7+√48| + √48 ) ]
=(1/2) [ ( ln|17+12√2| + 12√2 ) - ( ln|7+4√3| + 4√3 ) ]
let
x-1/2 =(1/2)secu
dx= (1/2)secu.tanu du
x=4 , u = arcsec(7)
x=9, u =arcsec(17)
∫ (4->9) √x/√(x-1) dx
=∫ (4->9) x /√(x^2-x) dx
=∫ (arcsec7->arcsec17) { [(1/2)+(1/2)secu] /[(1/2)tanu] } . [ (1/2)secu.tanu du]
=(1/2)∫ (arcsec7->arcsec17) (1+secu)secu du
=(1/2) [ ln|secu+tanu| + tanu ]| (arcsec7->arcsec17)
=(1/2) [ ( ln|17+√288| + √288 ) - ( ln|7+√48| + √48 ) ]
=(1/2) [ ( ln|17+12√2| + 12√2 ) - ( ln|7+4√3| + 4√3 ) ]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询