设f(0)导数存在,f(0)=0.求极限
3个回答
展开全部
h->0
g(h) =f(1-e^h) =>g(0) =0
g'(h) = -e^h. f'(1-e^h) =>g'(0)/1! = -e^0.f'(0)
f(1-e^h)
=g(h)
=g(0) + [g'(0)/1! ]h +o(h)
=f(1-e^h) -e^0.f'(0)h +o(h)
=f(0) -f'(0).h +o(h)
= -f'(0).h +o(h)
lim(h->0) f(1-e^h) /h
=lim(h->0) -f'(0). h/h
=-f'(0)
g(h) =f(1-e^h) =>g(0) =0
g'(h) = -e^h. f'(1-e^h) =>g'(0)/1! = -e^0.f'(0)
f(1-e^h)
=g(h)
=g(0) + [g'(0)/1! ]h +o(h)
=f(1-e^h) -e^0.f'(0)h +o(h)
=f(0) -f'(0).h +o(h)
= -f'(0).h +o(h)
lim(h->0) f(1-e^h) /h
=lim(h->0) -f'(0). h/h
=-f'(0)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询