统计量包括什么

统计量包括什么... 统计量包括什么 展开
 我来答
当代教育科技知识库
高能答主

2020-01-05 · 擅长科技新能源相关技术,且研究历史文化。
当代教育科技知识库
采纳数:1828 获赞数:387428

向TA提问 私信TA
展开全部

包括U统计量,秩统计量,抽样分布。平均数、中位数、众数。样本均值(即n个样本的算术平均值) ,样本方差(即n个样本与样本均值之间平均偏离程度的度量)。

宏观量是大量微观量的统计平均值,具有统计平均的意义,对于单个微观粒子,宏观量是没有意义的.相对于微观量的统计平均性质的宏观量也叫统计量。

需要指出的是,描写宏观世界的物理量例如速度、动能等实际上也可以说是宏观量,但宏观量并不都具有统计平均的性质,因而宏观量并不都是统计量。



扩展资料:

统计工作、统计资料、统计科学三者之间的关系是:

统计工作的成果是统计资料,统计资料和统计科学的基础是统计工作,统计科学既是统计工作经验的理论概括,又是指导统计工作的原理、原则和方法。

原始的统计工作即人们收集数据的原始形态已经有几千年的历史,而它作为一门科学,是从17世纪开始。英语中统计学家和统计员是同一个单词,但统计学并不是直接产生于统计工作的经验总结。

每一门科学都有其建立、发展和客观条件,统计科学则是统计工作经验、社会经济理论、计量经济方法融合、提炼、发展而来的一种边缘性学科。

参考资料来源:百度百科-统计量

数位汇聚
2023-08-28 广告
统计年鉴下载方法无非以下几种:1、各省市统计机构的网站。不过并不是每个市的统计网站都有统计年鉴的,做的好的比如上海、福州市,资料就很全,差的城市往往资料欠缺。但是,即使网站有统计年鉴,但是一般都是网页版在线观看,要下载下来需要花费很大的力气... 点击进入详情页
本回答由数位汇聚提供
小圆帽聊汽车
高粉答主

2020-01-07 · 致力于汽车领域知识的解答
小圆帽聊汽车
采纳数:796 获赞数:270542

向TA提问 私信TA
展开全部

平均数、中位数、众数。

样本均值(即n个样本的算术平均值) ,

样本方差(即n个样本与样本均值之间平均偏离程度的度量),

样本极差(样本中最大值减最小值),

众数,样本的各阶原点矩和中心矩。

统计量是统计理论中用来对数据进行分析、检验的变量。宏观量是大量微观量的统计平均值,具有统计平均的意义,对于单个微观粒子,宏观量是没有意义的.相对于微观量的统计平均性质的宏观量也叫统计量。需要指出的是,描写宏观世界的物理量例如速度、动能等实际上也可以说是宏观量,但宏观量并不都具有统计平均的性质,因而宏观量并不都是统计量。

扩展资料:

计(见点估计),并在这种估计的基础上检验非参数性总体中的有关假设。把样本X1,X2,…,Xn 按大小排列为,若 则称Ri为xi的秩,全部n个秩R1,R2,…,Rn构成秩统计量,它的取值总是1,2,n的某个排列。

假设检验中的似然比原则所导致的似然比统计量,K.皮尔森的拟合优度(见假设检验)准则所导致的Ⅹ统计量,线性统计模型中的最小二乘法所导致的一系列线性与二次型统计量。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
阿嚏文化
2019-09-03 · 方案材料能手,望大家多多交流
阿嚏文化
采纳数:320 获赞数:552

向TA提问 私信TA
展开全部
平均数、中位数、众数。
样本均值(即n个样本的算术平均值) ,
样本方差(即n个样本与样本均值之间平均偏离程度的度量),
样本极差(样本中最大值减最小值),
众数,样本的各阶原点矩和中心矩。
统计量是统计理论中用来对数据进行分析、检验的变量。宏观量是大量微观量的统计平均值,具有统计平均的意义,对于单个微观粒子,宏观量是没有意义的.相对于微观量的统计平均性质的宏观量也叫统计量。需要指出的是,描写宏观世界的物理量例如速度、动能等实际上也可以说是宏观量,但宏观量并不都具有统计平均的性质,因而宏观量并不都是统计量。
样本的已知函数;其作用是把样本中有关总体的信息汇集起来;是数理统计学中一个重要的基本概念。统计量依赖且只依赖于样本x1,x2,…xn;它不含总体分布的任何未知参数。
从样本推断总体(见统计推断)通常是通过统计量进行的。例如x1,x2,…,xn是从正态总体N(μ,1)(见正态分布)中抽出的简单随机样本,其中均值(见数学期望)μ是未知的,为了对μ作出推断,计算样本均值。可以证明,在一定意义下,塣包含样本中有关μ的全部信息,因而能对μ作出良好的推断。这里只依赖于样本x1,x2,…,xn,是一个统计量。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式