求∫arcsin√x/√(1-x)dx详细过程
2个回答
展开全部
I = ∫arcsin√xdx/√(1-x)
令 u = arcsin√x, 则 sinu = √x, x = (sinu)^2,
I = ∫u 2sinucosudu/cosu = 2∫usinudu
= -2∫udcosu = -2ucosu + 2∫cosudu
= -2ucosu + 2sinu + C
= -2√(1-x) arcsin√x + 2√x + C
令 u = arcsin√x, 则 sinu = √x, x = (sinu)^2,
I = ∫u 2sinucosudu/cosu = 2∫usinudu
= -2∫udcosu = -2ucosu + 2∫cosudu
= -2ucosu + 2sinu + C
= -2√(1-x) arcsin√x + 2√x + C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |