求函数的值域的方法?

包括高中的所有简单函数值域?!!!!急~~~!!!... 包括高中的所有简单函数值域?!!!!急~~~!!! 展开
 我来答
百度网友2bfe1d38f
2006-12-01 · TA获得超过1.7万个赞
知道大有可为答主
回答量:1548
采纳率:0%
帮助的人:2390万
展开全部
求 函数值域的几种常见方法
1.直接法:利用常见函数的值域来求
一次函数y=ax+b(a 0)的定义域为R,值域为R;
反比例函数 的定义域为{x|x 0},值域为{y|y 0};
二次函数 的定义域为R,
当a>0时,值域为{ };当a<0时,值域为{ }.
例1.求下列函数的值域
① y=3x+2(-1 x 1) ② ③ ④
解:①∵-1 x 1,∴-3 3x 3,
∴-1 3x+2 5,即-1 y 5,∴值域是[-1,5]
②∵ ∴
即函数 的值域是 { y| y 2}

④当x>0,∴ = ,
当x<0时, =-
∴值域是 [2,+ ).(此法也称为配方法)
函数 的图像为:
2.二次函数比区间上的值域(最值):
例2 求下列函数的最大值、最小值与值域:
① ;
解:∵ ,∴顶点为(2,-3),顶点横坐标为2.
①∵抛物线的开口向上,函数的定义域R,
∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y -3 }.
②∵顶点横坐标2 [3,4],
当x=3时,y= -2;x=4时,y=1;
∴在[3,4]上, =-2, =1;值域为[-2,1].
③∵顶点横坐标2 [0,1],当x=0时,y=1;x=1时,y=-2,
∴在[0,1]上, =-2, =1;值域为[-2,1].
④∵顶点横坐标2 [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6,
∴在[0,1]上, =-3, =6;值域为[-3,6].
注:对于二次函数 ,
⑴若定义域为R时,
①当a>0时,则当 时,其最小值 ;
②当a<0时,则当 时,其最大值 .
⑵若定义域为x [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].
①若 [a,b],则 是函数的最小值(a>0)时或最大值(a<0)时,再比较 的大小决定函数的最大(小)值.
②若 [a,b],则[a,b]是在 的单调区间内,只需比较 的大小即可决定函数的最大(小)值.
注:①若给定区间不是闭区间,则可能得不到最大(小)值;
②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.
3.判别式法(△法):
判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论
例3.求函数 的值域
方法一:去分母得 (y-1) +(y+5)x-6y-6=0 ①
当 y11时 ∵x?R ∴△=(y+5) +4(y-1)×6(y+1) 0
由此得 (5y+1) 0
检验 时 (代入①求根)
∵2 ? 定义域 { x| x12且 x13} ∴
再检验 y=1 代入①求得 x=2 ∴y11
综上所述,函数 的值域为 { y| y11且 y1 }
方法二:把已知函数化为函数 (x12)
∵ x=2时 即
说明:此法是利用方程思想来处理函数问题,一般称判别式法. 判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.
4.换元法
例4.求函数 的值域
解:设 则 t 0 x=1-
代入得
5.分段函数
例5.求函数y=|x+1|+|x-2|的值域.
解法1:将函数化为分段函数形式: ,画出它的图象(下图),由图象可知,函数的值域是{y|y 3}.
解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+ ]. 如图
两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.
说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不断积累,还有如不等式法、三角代换法等.有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉和掌握各种解法,并在解题中尽量采用简捷解法.
三、练习:
1 ;
解:∵x 0, ,∴y 11.
另外,此题利用基本不等式解更简捷:
2
∵2 -4x+3>0恒成立(为什么?),
∴函数的定义域为R,
∴原函数可化为2y -4yx+3y-5=0,由判别式 0,
即16 -4×2y(3y-5)=-8 +40y 0(y 0),
解得0 y 5,又∵y 0, ∴0 注意:利用判别式法要考察两端点的值是否可以取到.
3 求函数的值域
① ; ②
解:①令 0,则 ,
原式可化为 ,
∵u 0,∴y ,∴函数的值域是(- , ].
②解:令 t=4x- 0 得 0 x 4
在此区间内 (4x- ) =4 ,(4x- ) =0
∴函数 的值域是{ y| 0 y 2}
小结:求函数值域的基本方法(直接法、换元法、判别式法);二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.
作业:求函数y= 值域
解:∵ ,
∴函数的定义域R,原式可化为 ,
整理得 ,
若y=1,即2x=0,则x=0;
若y 1,∵ R,即有 0,
∴ ,解得 且 y 1.
综上:函数是值域是{y| }.

参考资料: 祝你学习进步

笑傲江湖独求败
2006-12-01 · TA获得超过2.6万个赞
知道大有可为答主
回答量:1462
采纳率:0%
帮助的人:1441万
展开全部
函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
starleafstudio
2006-12-03 · TA获得超过475个赞
知道答主
回答量:51
采纳率:0%
帮助的人:0
展开全部
关于函数的值域(最值)的解决方法,有很多文章介绍了,如判别式法,实根分布法等,判别式法历来不能完全解决这个函数的值域(最值)问题,实根分布法比较复杂。我们应用函数的性质,可以完整解决分式函数的值域问题。

下面对和先讨论函数的性质。

性质1 若,函数在区间和区间是单调增函数;在区间 和区间是单调减函数。

性质1的证明从略。

性质2 若,函数在区间和区间上都是增函数。

性质2的证明从略。

例1 分别求函数在指定区间上的值域

(1) (2) (3)

解:(1)利用均值不等式,



当时,,

所以,函数的值域是。

(2)由(1)的解答过程,因为,所以均值不等式就失去了作用。我们可以用函数的单调性解决这个问题。

因为函数在区间上是增函数,当时,,所以,函数的值域是。

(3)把区间分割成两部分:和,由性质1知,函数在区间和上分别是减函数、增函数,

那么这个函数在两个区间上的值域分别是和,

所以函数在区间上的值域是。

例2 求下列函数的值域

(1) (2)

解:(1)用部分分式法,,就化归为例1(1)的情形。

(2)用换元法把分母上的式子转换为一个单项式。

设,则,代入函数得

,其中,当即时,函数取最小值。所以,原函数的值域为

例3 求函数的值域。

解:因为①

设其中,且,

那么,且

把 代入①式,得

如果

如果

当时,

从而

当时,且

从而或

所以,原函数的值域是

例4 求函数的值域。

解:

设代入原函数得

由于

所以

例5 求函数的值域。

解:

因为,函数是增函数,

原函数的值域是
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
竺羽班半青
2019-06-05 · TA获得超过3836个赞
知道小有建树答主
回答量:3099
采纳率:28%
帮助的人:426万
展开全部
向左转|向右转
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式