在△ABC中,角A,B,C所对的边分别为a,b,c,且b²+c²=a²+bc. ①求角A的大小;
1个回答
展开全部
解:
(1)
由余弦定理得a²=b²+c²-2bccosA
由已知b²+c²=a²搜绝+√3bc得a²=b²+c²-√3bc
2bccosA=√3bc
cosA=√3/2
A=π/6
sinAsinB=cos²(C/2)
sinAsinB=(1+cosC)/2
2sinAsinB=1-cos(A+B)
2sinAsinB=1-cosAcosB+sinAsinB
cosAcosB+sinAsinB=1
cos(A-B)=1
A-B=0
B=A=π/6
C=π-π/6-π/6=2π/3
(2)
三角形是等腰三角形,A=B,CM=BM=a/2=b/2
由余弦定理得
(√7)²=b²+(a/2)²-2b(a/2)cosC
b=a,C=2π/3代册或入世姿姿,整理,得
7a²/4=7
a²=4
a=b=2
S△ABC=(1/2)absinC=(1/2)×2×2×sin(2π/3)=√3
(1)
由余弦定理得a²=b²+c²-2bccosA
由已知b²+c²=a²搜绝+√3bc得a²=b²+c²-√3bc
2bccosA=√3bc
cosA=√3/2
A=π/6
sinAsinB=cos²(C/2)
sinAsinB=(1+cosC)/2
2sinAsinB=1-cos(A+B)
2sinAsinB=1-cosAcosB+sinAsinB
cosAcosB+sinAsinB=1
cos(A-B)=1
A-B=0
B=A=π/6
C=π-π/6-π/6=2π/3
(2)
三角形是等腰三角形,A=B,CM=BM=a/2=b/2
由余弦定理得
(√7)²=b²+(a/2)²-2b(a/2)cosC
b=a,C=2π/3代册或入世姿姿,整理,得
7a²/4=7
a²=4
a=b=2
S△ABC=(1/2)absinC=(1/2)×2×2×sin(2π/3)=√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |