高中数学 , 基本不等式题目的解法?
1个回答
展开全部
运用基本不等式需要具备三个条件:正数,有定值,等号能取到。
即:一正二定三等。
1/a
+
4/b
>=
2*√(4/ab),这个不等式中1/a
+
4/b与4/ab都不是定值,
所以用来求最值是不行的。
【正解】
y=1/a
+
4/b=(1/a
+
4/b)*1
=(1/a
+
4/b)*
[(a+b)/2]
=1/2*[1+b/a+4a/b+4]
=1/2*[b/a+4a/b+5]
≥1/2*[2√(b/a*4a/b)+5]……注意这里b/a*4a/b是定值4.条件具备。
=9/2,
b/a=4a/b时取到等号,a=2/3,b=4/3.
即:一正二定三等。
1/a
+
4/b
>=
2*√(4/ab),这个不等式中1/a
+
4/b与4/ab都不是定值,
所以用来求最值是不行的。
【正解】
y=1/a
+
4/b=(1/a
+
4/b)*1
=(1/a
+
4/b)*
[(a+b)/2]
=1/2*[1+b/a+4a/b+4]
=1/2*[b/a+4a/b+5]
≥1/2*[2√(b/a*4a/b)+5]……注意这里b/a*4a/b是定值4.条件具备。
=9/2,
b/a=4a/b时取到等号,a=2/3,b=4/3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询