在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行.

直线l2过点B(0,2)且与x轴平行.直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数(k>0)的图象过点E与直线l1相交于点F.问:是否存在点E及y轴上的... 直线l2过点B(0,2)且与x轴平行.直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数 (k>0)的图象过点E与直线l1相交于点F.问:是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由 要具体过程,拜托啦后天要交了!! 展开
 我来答
支恺源长霞
2019-06-04 · TA获得超过3769个赞
知道大有可为答主
回答量:3052
采纳率:32%
帮助的人:229万
展开全部
存在
∵当反比例函数过点P时K=2,且此时以M、E、F为顶点不能构建三角形
∴分两种情况讨论
当k<2时,(作图,图我就不画了)由图可得
以M、E、F为顶点的三角形与△PEF全等,只可能为△MEF≌△PEF,EF为公共边,作AC⊥y轴
易得△CHM∽△MBE,BM/FC=EM/CM
∵CH=1,EM=PE=1-k/2
,CM=PE=2-k
∴BM=(1-k/2)/2-k,解得BM=1/2
∴据勾股定理得(1-k/2)²=(k/2)²+(1/2)²,解得k=3/4
∴此时y=3/4x
,
E坐标为(3/8,2)
当K>2时,(同样是作图)
由图可得,只能是△MEF≌△PEF,作PQ⊥y轴于D
同理得BM/FD=EM/FM
∵DF=1,EM=PF=k-2,FM=FE=k/2-1
∴BM=(k-2)/(k/2-1),解得BM=2
∴据勾股得
(k-2)²=(k/2)²+2²
,解得k1=0(舍去),k2=16/3
∴此时y=16/3x
,E坐标为(8/3,2)
综上所述,符合条件的E点坐标有
E1(3/8,2),
E2(8/3,2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式