线性代数关于基础解系的问题?
对于这种秩为1的三阶矩阵方程,我知道它的基础解系有两个解向量。但是这种行最简形没办法用我平时的方法写出它的基础解系,求问这种应该怎么写它的基础解系。...
对于这种秩为1的三阶矩阵方程,我知道它的基础解系有两个解向量。但是这种行最简形没办法用我平时的方法写出它的基础解系,求问这种应该怎么写它的基础解系。
展开
2个回答
展开全部
第一个: 即 x2 + x3 = 0, 取 x3 = -1,则 x2 = 1, x1 任意,可写为基础解系 (0, 1, -1)^T;
取 x3 = 0,则 x2 = 0, x1 任意,但不能再为 0, 可写为基础解系 (1, 0, 0)^T;
通解 x = k (0, 1, -1)^T + c (1, 0, 0)^T.
第二个: 即 x3 = 0, 取 x1 = 1, x2 任意,可写为基础解系 (1, 0, 0)^T;
x3 = 0, 取 x1 = 0,则 x2 任意,但不能再为 0, 可写为基础解系 (0, 1, 0)^T;
通解 x = k (1, 0, 0)^T + c (0, 1, 0)^T.
取 x3 = 0,则 x2 = 0, x1 任意,但不能再为 0, 可写为基础解系 (1, 0, 0)^T;
通解 x = k (0, 1, -1)^T + c (1, 0, 0)^T.
第二个: 即 x3 = 0, 取 x1 = 1, x2 任意,可写为基础解系 (1, 0, 0)^T;
x3 = 0, 取 x1 = 0,则 x2 任意,但不能再为 0, 可写为基础解系 (0, 1, 0)^T;
通解 x = k (1, 0, 0)^T + c (0, 1, 0)^T.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |