什么叫几何

 我来答
内蒙古恒学教育
2022-11-08 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
几何图形,即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。
生活中到处都有几何图形,看见的一切都是由点、线、面等基本几何图形组成的。几何源于西文西方的测地术,解决点线面体之间的关系。
几何图形分为立体图形和平面图形,各部分不在同一平面内的图形叫做立体图形;各部分都在同一平面内的图形叫做平面图形。
几何图形,即从实物中抽象出来的各种图形。生活中到处都有几何图形,我们所看见的一切都是由点、线、面等基本几何图形组成的,无论对象多么的复杂,都可以用点、线、面去化简和归纳,有效的规划错综复杂的世界。几何源于西方的测地术(土地的测量),用来解决点、线、面、体之间的关系。无穷尽的丰富变化使几何图案本身拥有无穷的魅力。
天上在不在人间

2020-10-31 · TA获得超过2.3万个赞
知道大有可为答主
回答量:4万
采纳率:99%
帮助的人:2011万
展开全部
几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。几何思想是数学中最重要的一类思想。暂时的数学各分支发展都有几何化趋向,即用几何观点及思想方法去探讨各数学理论。常见定理有勾股定理,欧拉定理,斯图尔特定理等。

几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。几何思想是数学中最重要的一类思想。暂时的数学各分支发展都有几何化趋向,即用几何观点及思想方法去探讨各数学理论。

平面与立体
最早的几何学当属平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何采用了公理化方法,在数学思想史上具有重要的意义。
平面几何的内容也很自然地过渡到了三维空间的立体几何。为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。
笛卡尔引进坐标系后,代数与几何的关系变得明朗,且日益紧密起来。这就促使了解析几何的产生。解析几何是由笛卡尔、费马分别独立创建的。这又是一次具有里程碑意义的事件。从解析几何的观点出发,几何图形的性质可以归结为方程的分析性质和代数性质。几何图形的分类问题(比如把圆锥曲线分为三类),也就转化为方程的代数特征分类的问题,即寻找代数不变量的问题。
立体几何归结为三维空间解析几何的研究范畴,从而研究二次曲面(如球面,椭球面、锥面、双曲面,鞍面)的几何分类问题,就归结为研究代数学中二次型的不变量问题。
总体上说,上述的几何都是在欧氏空间的几何结构——即平坦的空间结构——背景下考察,而没有真正关注弯曲空间下的几何结构。欧几里得几何公理本质上是描述平坦空间的几何特性,特别是第五公设引起了人们对其正确性的疑虑。由此人们开始关注其弯曲空间的几何,即“非欧几何”。非欧几何中包括了最经典几类几何学课题,比如“球面几何”,“罗氏几何”等等。另一方面,为了把无穷远的那些虚无缥缈的点也引入到观察范围内,人们开始考虑射影几何。
这些早期的非欧几何学总的来说,是研究非度量的性质,即和度量关系不大,而只关注几何对象的位置问题——比如平行、相交等等。这几类几何学所研究的空间背景都是弯曲的空间。
微分几何
为了引入弯曲空间的上的度量(长度、面积等等),我们就需要引进微积分的方法去局部分析空间弯曲的性质。微分几何于是应运而生。研究曲线和曲面的微分几何称为古典微分几何。但古典微分几何讨论的对象必须事先嵌入到欧氏空间里,才定义各种几何概念等等(比如切线、曲率)。一个几何概念如果和几何物体所处的空间位置无关,而只和其本身的性态相关,我们就说它是内蕴的。用物理的语言来说,就是几何性质必须和参考系选取无关。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
丹的葵奎6y

2020-10-31 · TA获得超过4.1万个赞
知道大有可为答主
回答量:2.2万
采纳率:98%
帮助的人:670万
展开全部
几何,就是研究空间结构及性质的一门学科。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
俟卓5J
2020-10-31 · TA获得超过316个赞
知道小有建树答主
回答量:1530
采纳率:37%
帮助的人:85.6万
展开全部
几何,犹若干,多少;研究空间结构及性质的学科。语出《诗经·小雅·巧言》:“为犹将多,尔居徒几何? ”
几何_
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
果实课堂
高粉答主

2020-10-31 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:7.4万
采纳率:81%
帮助的人:3757万
展开全部

几何的由来是什么

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式