x->0
分母
sinx = x-(1/6)x^3 +o(x^3)
x-sinx =(1/6)x^3 +o(x^3)
//
lim(x->0) [ f(x) - f(ln(1+x))]/(x-sinx)
=lim(x->0) [ f(x) - f(ln(1+x))]/[(1/6)x^3] (0/0 分子分母分别求导)
=lim(x->0) [ f'(x) - f'(ln(1+x))/(1+x) ]/[(1/2)x^2]
=lim(x->0) [ (1+x) f'(x) - f'(ln(1+x)) ]/[(1/2)x^2.(1+x)]
=lim(x->0) [ (1+x) f'(x) - f'(ln(1+x)) ]/[(1/2)x^2] (0/0 分子分母分别求导)
=lim(x->0) [ f'(x) +(1+x)f''(x) - f'(ln(1+x))/(1+x) ]/x
=lim(x->0) [ (1+x)f'(x) +(1+x)^2.f''(x) - f''(ln(1+x)) ]/ x
=lim(x->0) [ (1+x)f'(x) +(1+x)^2.f''(x) - f''(x) ]/ x
=lim(x->0) [ (1+x)f'(x) +(2x+x^2).f''(x) ]/ x
=lim(x->0) [ (1+x)f'(x)/x ] +lim(x->0)(2+x)f''(x)
= f''(0) +2f''(0)
=3f''(0)
=3
首先感谢你,我也用洛必达做出3但是我凑微分又做出不一样的答案,但是我用凑定义法发现最后解出来一个3f'(0)/x,就不会往下解了。。。你能用一下凑定义做一下吗?