用数学归纳法证明不等式1/4+1/9+1/16+...+1/n²
1个回答
展开全部
当n=2时,不等式左边=1/4,右边=1-1/2=1/2;1/4<1/2,不等式成立
假设当n=k(k≥2,k∈N*)时,原不等式成立,
即1/4+1/9+1/16+······+1/k²<1-1/k
则当n=k+1时,
1/4+1/9+1/16+······+1/k²+1/(k+1)²<1-1/k+1/(k+1)²=1-[1/k-1/(k+1)²]
现在比较1/k-1/(k+1)²和1/(k+1)的大小
1/k-1/(k+1)²-1/(k+1)=[(k+1)²-k-k(k+1)]/[k(k+1)²]=1/[k(k+1)²]>0
所以1/k-1/(k+1)²>1/(k+1)
则1-[1/k-1/(k+1)²]<1-1/(k+1)
于是有1/4+1/9+1/16+······+1/k²+1/(k+1)²<1-1/(k+1)
即当n=k+1时,原不等式亦成立
综上所述,不等式1/4+1/9+1/16+...+1/n²
假设当n=k(k≥2,k∈N*)时,原不等式成立,
即1/4+1/9+1/16+······+1/k²<1-1/k
则当n=k+1时,
1/4+1/9+1/16+······+1/k²+1/(k+1)²<1-1/k+1/(k+1)²=1-[1/k-1/(k+1)²]
现在比较1/k-1/(k+1)²和1/(k+1)的大小
1/k-1/(k+1)²-1/(k+1)=[(k+1)²-k-k(k+1)]/[k(k+1)²]=1/[k(k+1)²]>0
所以1/k-1/(k+1)²>1/(k+1)
则1-[1/k-1/(k+1)²]<1-1/(k+1)
于是有1/4+1/9+1/16+······+1/k²+1/(k+1)²<1-1/(k+1)
即当n=k+1时,原不等式亦成立
综上所述,不等式1/4+1/9+1/16+...+1/n²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询