关于高中函数单调性的题目。
已知f(x)=根号x^2-1.试判断f(X)在(1,正无穷大)上的单调性。并证明。请各位帮帮我啊!!!并且附上解答过程!!谢谢!!!...
已知f(x)=根号x^2-1.试判断f(X)在(1,正无穷大)上的单调性。并证明。请各位帮帮我啊!!!并且附上解答过程!!谢谢!!!
展开
搜索资料
展开全部
方法一:导数法
对f
求导,知得到f'=x/√道(x^2-1)
当x>1
时候,x^2-1>0
所以f'>0
所以f(X)在(1,正无穷大)上的单调专递增
方法二:定义法
x1>x2>1
f(x2)-f(x1)
=√(x2^2-1)-√(x1^2-1)
=(√(x2^2-1)+√(x1^2-1))/(√(x2^2-1)-√(x1^2-1))*(√(x2^2-1)+√(x1^2-1))
=(√(x2^2-1)+√(x1^2-1))/(x2^2-x1^2)>0
同理也可属以证明是增函数
对f
求导,知得到f'=x/√道(x^2-1)
当x>1
时候,x^2-1>0
所以f'>0
所以f(X)在(1,正无穷大)上的单调专递增
方法二:定义法
x1>x2>1
f(x2)-f(x1)
=√(x2^2-1)-√(x1^2-1)
=(√(x2^2-1)+√(x1^2-1))/(√(x2^2-1)-√(x1^2-1))*(√(x2^2-1)+√(x1^2-1))
=(√(x2^2-1)+√(x1^2-1))/(x2^2-x1^2)>0
同理也可属以证明是增函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询