已知抛物线经过点A(0,3),B(4,1),C(3,0)。

(1)求抛物线解析式;(2)连接AC,BC,AB,求tan∠BAC;(3)点P是该抛物线上一点,且在第一象限内,过点P作PG⊥... (1)求抛物线解析式; (2)连接AC,BC,AB,求tan∠BAC; (3)点P是该抛物线上一点,且在第一象限内,过点P作PG⊥ 展开
 我来答
汤采姒惜雪
2020-06-21 · TA获得超过3679个赞
知道大有可为答主
回答量:3087
采纳率:31%
帮助的人:218万
展开全部
(1)、将
(
0,3)代入
y
=
ax^2
+
bx
+
c,3
=
0
+
0
+
c,c
=
3;

(
4,1
)、(
3,0
)
分别代入
y
=
ax^2
+
bx
+
3,
1
=
16a
+
4b
+
3,0
=
9a
+
3b
+
3,解得:a
=
1/2,b
=
-5/2,
抛物线解析式为
y
=
x^2/2
-
5x/2
+
3;
(2)、AC斜率为
(
3-0
)/(
0-3
)
=
-1,BC斜率为
(
4-3
)/(
1-0
)
=
1,

AC⊥BC,△ABC
是C为直角的直角三角形;
tan∠BAC
=
BC/AC
= √2/(3√2)
=
1/3,AC
=
3BC;
(3)
如图:
△APG

△AFP
共角A,都是直角三角形,∴
△APG
≌ △AFP;
因此,当
AF
=
3FP,或
FP
=
3AF
时, △ABC ≌ △AFP ≌ △APG;
即点P
y
-
3
=
3x

y
-
3
=
x/3;分别代入函数式:
3x
+
3
=
x^2/2
-
5x/2
+
3,x^2
-
11x
=
0,x
=
11,y
=
36;
x/3
+
3
= x^2/2
-
5x/2
+
3, 3x^2
-
17x
=
0,x
=
17/3,y
=
44/9;
点P
有2点,坐标分别为
(
11,36
)、(
17/3,44/9
)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式