2个回答
展开全部
x->0
ln(1+ sin(2x^2))
=ln(1+ 2x^2 +o(x^2)]
=2x^2 -(1/2)[2x^2]^2 +o(x^4)
=2x^2 - 2x^4+o(x^4)
(1+ sin(2x^2) ^(1/x^2)
=e^[ln(1+ sin(2x^2))/x^2]
=e^{ [2x^2 - 2x^4+o(x^4)]/x^2 }
=e^[ 2 - 2x^2+o(x^2)]
(1+ sin(2x^2) ^(1/x^2) - e^2
=e^2 . [e^(-2x^2+o(x^2)) -1 ]
=e^2 . [ -2x^2+o(x^2) ]
lim(x->0) [(1+ sin(2x^2) ^(1/x^2) - e^2 ]/x^n = a
=lim(x->0) e^2 . (-2x^2)/x^n = a
=>
n=2 , a= -2e^2
ln(1+ sin(2x^2))
=ln(1+ 2x^2 +o(x^2)]
=2x^2 -(1/2)[2x^2]^2 +o(x^4)
=2x^2 - 2x^4+o(x^4)
(1+ sin(2x^2) ^(1/x^2)
=e^[ln(1+ sin(2x^2))/x^2]
=e^{ [2x^2 - 2x^4+o(x^4)]/x^2 }
=e^[ 2 - 2x^2+o(x^2)]
(1+ sin(2x^2) ^(1/x^2) - e^2
=e^2 . [e^(-2x^2+o(x^2)) -1 ]
=e^2 . [ -2x^2+o(x^2) ]
lim(x->0) [(1+ sin(2x^2) ^(1/x^2) - e^2 ]/x^n = a
=lim(x->0) e^2 . (-2x^2)/x^n = a
=>
n=2 , a= -2e^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询