当x→0时,(x^2+x-2)^2lnx与a(x-1)^n是等价无穷小,则常数a=,n =? 20
2个回答
展开全部
x->1
(x^2+x-2)^2. lnx
=[(x-1)(x+2)]^2. ln[1+(x-1)]
=(x+2)^2. (x-1)^3 +o[(x-1)^3]
//
lim(x->1) (x^2+x-2)^2. lnx / [a(x-1)^n] = 1
lim(x->1) (x+2)^2. (x-1)^3/ [a(x-1)^n] = 1
lim(x->1) 9(x-1)^3 / [a(x-1)^n] = 1
=>
a=9 and n=3
(x^2+x-2)^2. lnx
=[(x-1)(x+2)]^2. ln[1+(x-1)]
=(x+2)^2. (x-1)^3 +o[(x-1)^3]
//
lim(x->1) (x^2+x-2)^2. lnx / [a(x-1)^n] = 1
lim(x->1) (x+2)^2. (x-1)^3/ [a(x-1)^n] = 1
lim(x->1) 9(x-1)^3 / [a(x-1)^n] = 1
=>
a=9 and n=3
追问
(x+2)^2. (x-1)^3这怎么来的?
追答
(x^2+x-2)^2 = [(x+2)(x-1)]^2 =(x+2)^2.(x-1)^2
x->1
lnx = ln( 1+ (x-1) ) 等价于 (x-1)
=>
(x^2+x-2)^2 .lnx 等价于 (x+2)^2. (x-1)^3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询