展开全部
求由z=1-4x²-y²,z=0所围立体的体积。
解:这是半个椭球。积分域D是一个焦点在y轴上,长半轴a=1,短半轴b=1/2的椭圆。
其方程为 x²/(1/2)²+y²=1;即 D={(x,y)∣y=±√(1-4x²)};设其体积为V,则:
V=4∫<0,1/2,>dx∫<0,√(1-4x²>(1-4x²-y²)dy
=4∫<0,1/2>[y-4x²y-(1/3)y³]∣<0,√(1-4x²)>dx
=4∫<0,1/2>[√(1-4x²)-4x²√(1-4x²)-(1/3)(1-4x²)√(1-4x²)]dx
=4∫<0,1/2>[1-4x²-(1/3)+(4/3)x²]√(1-4x²)]dx
=4∫<0,1/2>[(2/3)-(8/3)x²]√(1-4x²)]dx
【令2x=sinu, 则 x=(1/2)sinu, dx=(1/2)cosudu; x=0时u=0; x=(1/2)时u=π/2】
=2∫<0,π/2>[(2/3)-(2/3)sin²u]cos²udu=∫<0,π/2>[(2/3)-(1/3)(1-cos2u)](1+cos2u)du
=∫<0,π/2>[(1/3)+(1/3)cos2u](1+cos2u)du=(1/3)∫<0,π/2>[(1+cos2u)²du
=(1/3)∫<0,π/2>[1+2cos2u+(cos²2u)]du
=(1/3)[(u+sin2u)∣<0,π/2>+∫<0,π/2>(1+cos4u)/2]du
=(1/3){[(π/2)+(1/2)[u+(1/4)sin4u]<0,π/2>}
=(1/3)[(π/2)+(1/2)(π/2)]=π/4;
解:这是半个椭球。积分域D是一个焦点在y轴上,长半轴a=1,短半轴b=1/2的椭圆。
其方程为 x²/(1/2)²+y²=1;即 D={(x,y)∣y=±√(1-4x²)};设其体积为V,则:
V=4∫<0,1/2,>dx∫<0,√(1-4x²>(1-4x²-y²)dy
=4∫<0,1/2>[y-4x²y-(1/3)y³]∣<0,√(1-4x²)>dx
=4∫<0,1/2>[√(1-4x²)-4x²√(1-4x²)-(1/3)(1-4x²)√(1-4x²)]dx
=4∫<0,1/2>[1-4x²-(1/3)+(4/3)x²]√(1-4x²)]dx
=4∫<0,1/2>[(2/3)-(8/3)x²]√(1-4x²)]dx
【令2x=sinu, 则 x=(1/2)sinu, dx=(1/2)cosudu; x=0时u=0; x=(1/2)时u=π/2】
=2∫<0,π/2>[(2/3)-(2/3)sin²u]cos²udu=∫<0,π/2>[(2/3)-(1/3)(1-cos2u)](1+cos2u)du
=∫<0,π/2>[(1/3)+(1/3)cos2u](1+cos2u)du=(1/3)∫<0,π/2>[(1+cos2u)²du
=(1/3)∫<0,π/2>[1+2cos2u+(cos²2u)]du
=(1/3)[(u+sin2u)∣<0,π/2>+∫<0,π/2>(1+cos4u)/2]du
=(1/3){[(π/2)+(1/2)[u+(1/4)sin4u]<0,π/2>}
=(1/3)[(π/2)+(1/2)(π/2)]=π/4;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询