加法是减法的逆运算吗?
减法是加法的逆运算,除法是乘法的逆运算。逆运算是一种对应法则。假设A是一个非空集合,对A中的任意两个元素a和b,根据某种法则使A中有唯一确定的元素c与它们对应,就说这个法则是A中的一种运算。
反过来,如果已知元素c,以及元素a、b中的一个,按照某种法则,可以得到另一个元素,这样的法则也定义了一种运算,这样的运算叫做原来运算的逆运算。如减法是加法的逆运算。
举例
幂与对数是反过来求参与运算的量的运算,减法是加法的逆运算,除法是乘法的逆运算。运算是一种对应法则,按照某种法则,可以得到另一个元素,这样的法则也定义了一种运算,这样的运算叫做原来运算的逆运算。如加法和减法,乘法与除法,幂与对数,微分与积分也互为逆运算。
在一个等式中,用相反的运算方法,从得数求出原式中某一个数的方法。如3×4=12,可用除法由得数12求出被乘数3或乘数4。
加法是减法的逆运算。
加法(通常用加号“+”表示)是算术的四个基本操作之一,其余的是减法,乘法和除法。例如,在下面的图片中,共有三个苹果和两个苹果的组合,共计五个苹果。该观察结果等同于数学表达式“3 + 2 = 5”,即“3加2等于5”。
加法有几个重要的属性。它是可交换的,这意味着顺序并不重要,它又是相互关联的,这意味着当添加两个以上的数字时,执行加法的顺序并不重要。重复加1与计数相同;加0不改变结果。加法还遵循相关操作(如减法和乘法)。
加法的性质:
一般来说,在一个集合F上定义一个二元关系“+”,满足:
Ⅰ 交换律:对任意的 a ,b ∈ F ,a + b = b + a ∈ F;
Ⅱ 结合律:对任意的a,b,c∈F,a + (b +c) = (a +b) +c;
Ⅲ 单位元:存在一个元素0∈ F ,满足对任意的a∈ F ,a + 0 = 0 + a = a;
Ⅳ逆元:对任意的 a ∈F ,存在一个元素-a∈ F ,满足a + (-a) = 0。